Open Access. Powered by Scholars. Published by Universities.®

Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

Air Force Institute of Technology

Series

2020

Discipline
Keyword
Publication

Articles 1 - 21 of 21

Full-Text Articles in Physics

3-D Fabry–Pérot Cavities Sculpted On Fiber Tips Using A Multiphoton Polymerization Process, Jonathan W. Smith, Jeremiah C. Williams, Joseph S. Suelzer, Nicholas G. Usechak, Hengky Chandrahalim Dec 2020

3-D Fabry–Pérot Cavities Sculpted On Fiber Tips Using A Multiphoton Polymerization Process, Jonathan W. Smith, Jeremiah C. Williams, Joseph S. Suelzer, Nicholas G. Usechak, Hengky Chandrahalim

Faculty Publications

This paper presents 3-D Fabry–Pérot (FP) cavities fabricated directly onto cleaved ends of low-loss optical fibers by a two-photon polymerization (2PP) process. This fabrication technique is quick, simple, and inexpensive compared to planar microfabrication processes, which enables rapid prototyping and the ability to adapt to new requirements. These devices also utilize true 3-D design freedom, facilitating the realization of microscale optical elements with challenging geometries. Three different device types were fabricated and evaluated: an unreleased single-cavity device, a released dual-cavity device, and a released hemispherical mirror dual-cavity device. Each iteration improved the quality of the FP cavity's reflection spectrum. The …


Generation Of Vector Partially Coherent Optical Sources Using Phase-Only Spatial Light Modulators, Milo W. Hyde Iv, Santasri R. Bose-Pillai Oct 2020

Generation Of Vector Partially Coherent Optical Sources Using Phase-Only Spatial Light Modulators, Milo W. Hyde Iv, Santasri R. Bose-Pillai

AFIT Patents

A vector partially coherent source (VPCS) generator includes a laser that emits coherent light; an interferometer consisting of polarizing beam splitters (PBSs) to split the laser light into its vertical and horizontal polarization components;] first and second spatial light modulators (SLMs) that respectively control the vertical and horizontal polarization components; and a control system communicatively coupled to the first and second SLMs to adjust beam shape and coherence without physically moving or removing optical elements in the interferometer.


A Fully Quantum Calculation Of Broadening And Shifting Coefficients Of The D1 And D2 Spectral Lines Of Alkali-Metal Atoms Colliding With Noble-Gas Atoms, Robert D. Loper, David E. Weeks Oct 2020

A Fully Quantum Calculation Of Broadening And Shifting Coefficients Of The D1 And D2 Spectral Lines Of Alkali-Metal Atoms Colliding With Noble-Gas Atoms, Robert D. Loper, David E. Weeks

Faculty Publications

We use the Baranger model to compute collisional broadening and shift rates for the D1 and D2 spectral lines of M + Ng, where M = K, Rb, Cs and Ng = He, Ne, Ar. Scattering matrix elements are calculated using the channel packet method, and non-adiabatic wavepacket dynamics are determined using the split-operator method together with a unitary transformation between adiabatic and diabatic representations. Scattering phase shift differences are weighted thermally and are integrated over temperatures ranging from 100 K to 800 K. We find that predicted broadening rates compare well with experiment, but shift rates are …


Implications Of Four-Dimensional Weather Cubes For Improved Cloud-Free Line-Of-Sight Assessments Of Free-Space Optical Communications Link Performance, Steven T. Fiorino, Santasri Bose-Pillai, Jaclyn Schmidt, Brannon Elmore, Kevin J. Keefer Jul 2020

Implications Of Four-Dimensional Weather Cubes For Improved Cloud-Free Line-Of-Sight Assessments Of Free-Space Optical Communications Link Performance, Steven T. Fiorino, Santasri Bose-Pillai, Jaclyn Schmidt, Brannon Elmore, Kevin J. Keefer

Faculty Publications

We advance the benefits of previously reported four-dimensional (4-D) weather cubes toward the creation of high-fidelity cloud-free line-of-sight (CFLOS) beam propagation for realistic assessment of autotracked/dynamically routed free-space optical (FSO) communication datalink concepts. The weather cubes accrue parameterization of optical effects and custom atmospheric resolution through implementation of numerical weather prediction data in the Laser Environmental Effects Definition and Reference atmospheric characterization and radiative transfer code. 4-D weather cube analyses have recently been expanded to accurately assess system performance (probabilistic climatologies and performance forecasts) at any wavelength/frequency or spectral band in the absence of field tests and employment data. The …


Applications Of Portable Libs For Actinide Analysis, Ashwin P. Rao, John D. Auxier Ii, Dung Vu, Michael B. Shattan Jul 2020

Applications Of Portable Libs For Actinide Analysis, Ashwin P. Rao, John D. Auxier Ii, Dung Vu, Michael B. Shattan

Faculty Publications

A portable LIBS device was used for rapid elemental impurity analysis of plutonium alloys. This device demonstrates the potential for fast, accurate in-situ chemical analysis and could significantly reduce the fabrication time of plutonium alloys.


Measurements Of Optical Turbulence Over 149-Km Path, Jack E. Mccrae, Santasri Bose-Pillai, Steven T. Fiorino, Aaron J. Archibald, Joel Meoak, Brannon Elmore, Thomas Kesler, Christopher A. Rice Jul 2020

Measurements Of Optical Turbulence Over 149-Km Path, Jack E. Mccrae, Santasri Bose-Pillai, Steven T. Fiorino, Aaron J. Archibald, Joel Meoak, Brannon Elmore, Thomas Kesler, Christopher A. Rice

Faculty Publications

An experiment was conducted to study turbulence along a 149-km path between the Mauna Loa and Haleakala mountain tops using digital cameras and light-emitting diode (LED) beacons. Much of the path is over the ocean, and a large portion of the path is 3 km above sea level. On the Mauna Loa side, six LED beacons were placed in a roughly linear array with pair spacings from 7 to 62 m. From the Haleakala side, a pair of cameras separated by 83.8 cm observed these beacons. Turbulence along the path induces tilts on the wavefronts, which results in displacements of …


Turbulence Profiling Using Pupil Plane Wavefront Data Derived Fried Parameter Values For A Dynamically Ranged Rayleigh Beacon, Steven M. Zuraski, Elizabeth Beecher, Jack E. Mccrae, Steven T. Fiorino Jul 2020

Turbulence Profiling Using Pupil Plane Wavefront Data Derived Fried Parameter Values For A Dynamically Ranged Rayleigh Beacon, Steven M. Zuraski, Elizabeth Beecher, Jack E. Mccrae, Steven T. Fiorino

Faculty Publications

Long-range optical imaging applications are typically hindered by atmospheric turbulence. The effect of turbulence on an imaging system can manifest itself as an image blur effect usually quantified by the phase distortions present in the system. The blurring effect can be understood on the basis of the measured strength of atmospheric optical turbulence along the propagation path and its impacts on phase perturbation statistics within the imaging system. One method for obtaining these measurements is by the use of a dynamically ranged Rayleigh beacon system that exploits strategically varied beacon ranges along the propagation path, effectively obtaining estimates of the …


Wave-Optics Investigation Of Turbulence Thermal Blooming Interaction: I. Using Steady-State Simulations, Mark F. Spencer Jul 2020

Wave-Optics Investigation Of Turbulence Thermal Blooming Interaction: I. Using Steady-State Simulations, Mark F. Spencer

Faculty Publications

Part I of this two-part paper uses wave-optics simulations to look at the Monte Carlo averages associated with turbulence and steady-state thermal blooming (SSTB). The goal is to investigate turbulence thermal blooming interaction (TTBI). At wavelengths near 1 μm, TTBI increases the amount of constructive and destructive interference (i.e., scintillation) that results from high-power laser beam propagation through distributed-volume atmospheric aberrations. As a result, we use the spherical-wave Rytov number and the distortion number to gauge the strength of the simulated turbulence and SSTB. These parameters simplify greatly given propagation paths with constant atmospheric conditions. In addition, we use the …


Wave-Optics Investigation Of Turbulence Thermal Blooming Interaction: Ii. Using Time-Dependent Simulations, Mark F. Spencer Jul 2020

Wave-Optics Investigation Of Turbulence Thermal Blooming Interaction: Ii. Using Time-Dependent Simulations, Mark F. Spencer

Faculty Publications

Part II of this two-part paper uses wave-optics simulations to look at the Monte Carlo averages associated with turbulence and time-dependent thermal blooming (TDTB). The goal is to investigate turbulence thermal blooming interaction (TTBI). At wavelengths near 1 μm, TTBI increases the amount of constructive and destructive interference (i.e., scintillation) that results from high-power laser beam propagation through distributed-volume atmospheric aberrations. As a result, we use the spherical-wave Rytov number, the number of wind-clearing periods, and the distortion number to gauge the strength of the simulated turbulence and TDTB. These parameters simply greatly given propagation paths with constant atmospheric conditions. …


Fourier Propagation Tool For Aberration Analysis And A Point Spread Function Calculation Of Systems With Curved Focal Planes, Stephen C. Cain Jun 2020

Fourier Propagation Tool For Aberration Analysis And A Point Spread Function Calculation Of Systems With Curved Focal Planes, Stephen C. Cain

Faculty Publications

This paper describes a new Fourier propagator for computing the impulse response of an optical system with a curved focal plane array, while including terms ignored in Fresnel and Fraunhofer calculations. The propagator includes a Rayleigh-Sommerfeld diffraction formula calculation from a distant point through the optical system to its image point predicted by geometric optics on a spherical surface. The propagator then approximates the neighboring field points via the traditional binomial approximation of the Taylor series expansion around that field point. This technique results in a propagator that combines the speed of a Fourier transform operation with the accuracy of …


Statistical Photo-Calibration Of Photo-Detectors For Radiometry Without Calibrated Light Sources Comprising An Arithmetic Unit To Determine A Gain And A Bias From Mean Values And Variance Values, Adrian M. Catarius, Nicholas Yielding, Stephen C. Cain, Michael D. Seal Jun 2020

Statistical Photo-Calibration Of Photo-Detectors For Radiometry Without Calibrated Light Sources Comprising An Arithmetic Unit To Determine A Gain And A Bias From Mean Values And Variance Values, Adrian M. Catarius, Nicholas Yielding, Stephen C. Cain, Michael D. Seal

AFIT Patents

Calibration of a radiometry system uses a readout circuit of a photo-detector to provide first and second measurements collected over first and second integration times, respectively, where the first and second measurements are related to a photonic input to the photo-detector by a gain and a bias. First mean and variance values are computed for a plurality of first measurements. Second mean and variance values are computed for a plurality of second measurements. The gain and bias are determined from the first and second mean values and the first and second variance values without the use of a calibrated source. …


A Physics-Based Machine Learning Study Of The Behavior Of Interstitial Helium In Single Crystal W–Mo Binary Alloys, Adib J. Samin May 2020

A Physics-Based Machine Learning Study Of The Behavior Of Interstitial Helium In Single Crystal W–Mo Binary Alloys, Adib J. Samin

Faculty Publications

In this work, the behavior of dilute interstitial helium in W–Mo binary alloys was explored through the application of a first principles-informed neural network (NN) in order to study the early stages of helium-induced damage and inform the design of next generation materials for fusion reactors. The neural network (NN) was trained using a database of 120 density functional theory (DFT) calculations on the alloy. The DFT database of computed solution energies showed a linear dependence on the composition of the first nearest neighbor metallic shell. This NN was then employed in a kinetic Monte Carlo simulation, which took into …


Single-Pulse, Kerr-Effect Mueller Matrix Lidar Polarimeter, Keyser, Christian K., Richard K. Martin, Helena Lopez-Aviles, Khanh Nguyen, Arielle M. Adams, Demetrios Christodoulides Apr 2020

Single-Pulse, Kerr-Effect Mueller Matrix Lidar Polarimeter, Keyser, Christian K., Richard K. Martin, Helena Lopez-Aviles, Khanh Nguyen, Arielle M. Adams, Demetrios Christodoulides

Faculty Publications

We present a novel light detection and ranging (LiDAR) polarimeter that enables measurement of 12 of 16 sample Mueller matrix elements in a single, 10 ns pulse. The new polarization state generator (PSG) leverages Kerr phase modulation in a birefringent optical fiber, creating a probe pulse characterized by temporally varying polarization. Theoretical expressions for the Polarization State Generator (PSG) Stokes vector are derived for birefringent walk-off and no walk-off and incorporated into a time-dependent polarimeter signal model employing multiple polarization state analyzers (PSA). Polarimeter modeling compares the Kerr effect and electro-optic phase modulator–based PSG using a single Polarization State Analyzer …


Experimental Determination Of The (0/−) Level For Mg Acceptors In Β-Ga2O3 Crystals, Christopher A. Lenyk, Trevor A . Gustafson, Sergey A. Basun, Larry E. Halliburton, Nancy C. Giles Apr 2020

Experimental Determination Of The (0/−) Level For Mg Acceptors In Β-Ga2O3 Crystals, Christopher A. Lenyk, Trevor A . Gustafson, Sergey A. Basun, Larry E. Halliburton, Nancy C. Giles

Faculty Publications

Electron paramagnetic resonance (EPR) is used to experimentally determine the (0/−) level of the Mg acceptor in an Mg-doped β-Ga2O3 crystal. Our results place this level 0.65 eV (±0.05 eV) above the valence band, a position closer to the valence band than the predictions of several recent computational studies. The crystal used in this investigation was grown by the Czochralski method and contains large concentrations of Mg acceptors and Ir donors, as well as a small concentration of Fe ions and an even smaller concentration of Cr ions. Below room temperature, illumination with 325 nm laser light …


Non-Linear Statistical Photocalibration Of Photodetectors Without Calibrated Light Sources, Stephen C. Cain Mar 2020

Non-Linear Statistical Photocalibration Of Photodetectors Without Calibrated Light Sources, Stephen C. Cain

Faculty Publications

Calibration of CCD arrays is commonly conducted using dark frames. Non-absolute calibration techniques only measure the relative response of the detectors. For absolute calibration to be achieved, a second calibration is sometimes utilized by looking at sources with known radiances. A process like this can be used to calibrate photodetectors if a calibration source is available and sensor time can be spared to perform the operation. A previous attempt at creating a procedure for calibrating a photodetector using the underlying Poisson nature of the photodetection statistics relied on a linear model. This effort produced the statistically applied non-uniformity calibration algorithm, …


Synthesizing General Electromagnetic Partially Coherent Sources From Random, Correlated Complex Screens, Milo W. Hyde Iv Mar 2020

Synthesizing General Electromagnetic Partially Coherent Sources From Random, Correlated Complex Screens, Milo W. Hyde Iv

Faculty Publications

We present a method to generate any genuine electromagnetic partially coherent source (PCS) from correlated, stochastic complex screens. The method described here can be directly implemented on existing spatial-light-modulator-based vector beam generators and can be used in any application which utilizes electromagnetic PCSs. Our method is based on the genuine cross-spectral density matrix criterion. Applying that criterion, we show that stochastic vector field realizations (corresponding to a desired electromagnetic PCS) can be generated by passing correlated Gaussian random numbers through “filters” with space-variant transfer functions. We include step-by-step instructions on how to generate the electromagnetic PCS field realizations. As an …


Near-Infrared-Sensitive Photorefractive Sn2P2S6 Crystals Grown By The Bridgman Method, O. M. Shumelyuk, A. Y. Volkov, Y. Skrypka, Larry E. Halliburton, Nancy C. Giles, Christopher A. Lenyk, Sergey A. Basun, A. A. Grabar, Y. M. Vysochansky, S. G. Odoulov, D. R. Evans Mar 2020

Near-Infrared-Sensitive Photorefractive Sn2P2S6 Crystals Grown By The Bridgman Method, O. M. Shumelyuk, A. Y. Volkov, Y. Skrypka, Larry E. Halliburton, Nancy C. Giles, Christopher A. Lenyk, Sergey A. Basun, A. A. Grabar, Y. M. Vysochansky, S. G. Odoulov, D. R. Evans

Faculty Publications

Ferroelectric tin hypothiodiphosphate (Sn2P2S6) crystals are well-known for their significant piezoelectric, electro-optic, and nonlinear optical properties. These crystals have usually been grown by a vapor transport technique. We report in this paper on the first study of photorefractive nonlinearity in Sn2P2S6 crystals grown by the Bridgman method. Pronounced photorefraction is observed in the near-infrared region of the spectrum even with no preliminary optical sensitizing.


Radiation-Induced Electron And Hole Traps In Ge1-XSnX (X = 0-0.094), Michael R. Hogsed, Kevin Choe, Norman Miguel, Buguo Wang, John Kouvetakis Feb 2020

Radiation-Induced Electron And Hole Traps In Ge1-XSnX (X = 0-0.094), Michael R. Hogsed, Kevin Choe, Norman Miguel, Buguo Wang, John Kouvetakis

Faculty Publications

The band structure of germanium changes significantly when alloyed with a few percent concentrations of tin, and while much work has been done to characterize and exploit these changes, the corresponding deep-level defect characteristics are largely unknown. In this paper, we investigate the dominant deep-level defects created by 2 MeV proton irradiation in Ge1 -xSnx (x = 0.0, 0.020, 0.053, 0.069, and 0.094) diodes and determine how the ionization energies of these defects change with tin concentrations. Deep-level transient spectroscopy measurements approximate the ionization energies associated with electron transitions to/from the valence band (hole traps) and conduction band (electron traps) …


Digital Holography Experiments With Degraded Temporal Coherence, Douglas E. Thornton, Davin Mao, Mark F. Spencer, Christopher A. Rice, Glen P. Perram Jan 2020

Digital Holography Experiments With Degraded Temporal Coherence, Douglas E. Thornton, Davin Mao, Mark F. Spencer, Christopher A. Rice, Glen P. Perram

Faculty Publications

To simulate the effects of multiple-longitudinal modes and rapid fluctuations in center frequency, we use sinusoidal phase modulation and linewidth broadening, respectively. These effects allow us to degrade the temporal coherence of our master-oscillator laser, which we then use to conduct digital holography experiments. In turn, our results show that the coherence efficiency decreases quadratically with fringe visibility and that our measurements agree with our models to within 1.8% for sinusoidal phase modulation and 6.9% for linewidth broadening.


Twisted Space-Frequency And Space-Time Partially Coherent Beams, Milo W. Hyde Iv Jan 2020

Twisted Space-Frequency And Space-Time Partially Coherent Beams, Milo W. Hyde Iv

Faculty Publications

We present partially coherent sources that are statistically twisted in the space-frequency and space-time domains. Beginning with the superposition rule for genuine partially coherent sources, we derive source plane expressions for the cross-spectral density (CSD) and mutual coherence functions (MCFs) for twisted space-frequency and space-time Gaussian Schell-model (GSM) beams. Using the Fresnel approximation to the free-space Green’s function, we then paraxially propagate the CSD and MCF to any plane z> 0. We discuss the beams’ behavior as they propagate, with particular emphasis on how the beam shape rotates or tumbles versus z. To validate our analysis, we simulate the generation …


Superconducting Phase Transition In Inhomogeneous Chains Of Superconducting Islands, Eduard Ilin, Irina Burkova, Xiangyu Song, Michael Pak, Dmitri S. Golubev, Alexey Bezryadin Jan 2020

Superconducting Phase Transition In Inhomogeneous Chains Of Superconducting Islands, Eduard Ilin, Irina Burkova, Xiangyu Song, Michael Pak, Dmitri S. Golubev, Alexey Bezryadin

Faculty Publications

We study one-dimensional chains of superconducting islands with a particular emphasis on the regime in which every second island is switched into its normal state, thus forming a superconductor-insulator-normal metal (S-I-N) repetition pattern. As is known since Giaever tunneling experiments, tunneling charge transport between a superconductor and a normal metal becomes exponentially suppressed, and zero-bias resistance diverges, as the temperature is reduced and the energy gap of the superconductor grows larger than the thermal energy. Here we demonstrate that this physical phenomenon strongly impacts transport properties of inhomogeneous superconductors made of weakly coupled islands with fluctuating values of the critical …