Open Access. Powered by Scholars. Published by Universities.®

Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 8 of 8

Full-Text Articles in Physics

Perturbative Unitarity And Nec Violation In Genesis Cosmology, Yong Cai, Ji Xu, Shuai Zhao, Siyi Zhou Jan 2022

Perturbative Unitarity And Nec Violation In Genesis Cosmology, Yong Cai, Ji Xu, Shuai Zhao, Siyi Zhou

Physics Faculty Publications

Explorations of the violation of null energy condition (NEC) in cosmology could enrich our understanding of the very early universe and the related gravity theories. Although a fully stable NEC violation can be realized in the “beyond Horndeski” theory, it remains an open question whether a violation of the NEC is allowed by some fundamental properties of UV-complete theories or the consistency requirements of effective field theory (EFT). We investigate the tree-level perturbative unitarity for stable NEC violations in the contexts of both Galileon and “beyond Horndeski” genesis cosmology, in which the universe is asymptotically Minkowskian in the past. We …


Towards Realism Interpretation Of Wave Mechanics Based On Maxwell Equations In Quaternion Space And Some Implications, Including Smarandache’S Hypothesis, Florentin Smarandache, Victor Christianto, Yunita Umniyati Jun 2020

Towards Realism Interpretation Of Wave Mechanics Based On Maxwell Equations In Quaternion Space And Some Implications, Including Smarandache’S Hypothesis, Florentin Smarandache, Victor Christianto, Yunita Umniyati

Branch Mathematics and Statistics Faculty and Staff Publications

No abstract provided.


Quantum Correlations Between The Light And Kilogram-Mass Mirrors Of Ligo, Haocun Yu, L. Mcmuller, M. Tse, L. Barsotti, N. Mavalvala, J. Betzwieser, C. D. Blair, S. E. Dwyer, A. Effler, K. E. Ramirez Jan 2020

Quantum Correlations Between The Light And Kilogram-Mass Mirrors Of Ligo, Haocun Yu, L. Mcmuller, M. Tse, L. Barsotti, N. Mavalvala, J. Betzwieser, C. D. Blair, S. E. Dwyer, A. Effler, K. E. Ramirez

Physics and Astronomy Faculty Publications and Presentations

Measurement of minuscule forces and displacements with ever greater precision encounters a limit imposed by a pillar of quantum mechanics: the Heisenberg uncertainty principle. A limit to the precision with which the position of an object can be measured continuously is known as the standard quantum limit (SQL) [1–4]. When light is used as the probe, the SQL arises from the balance between the uncertainties of photon radiation pressure imposed on the object and of the photon number in the photoelectric detection. The only possibility surpassing the SQL is via correlations within the position/momentum uncertainty of the object and the …


New Tests Of General Relativity, Quentin Bailey Jun 2019

New Tests Of General Relativity, Quentin Bailey

Quentin Bailey

The last decade has seen a rapid increase in the number of precision tests of relativity. This research has been motivated by the intriguing possibility that tiny deviations from relativity might arise in the underlying theory that is widely believed to successfully mesh General Relativity (GR) with quantum physics. Many of these tests have been analyzed within an effective field theory framework which generically describes possible deviations from exact relativity and contains some traditional test frameworks as limiting cases. One part of the activity has been a resurgence of interest in tests of relativity in the Minkowski-spacetime context, where Lorentz …


New Tests Of General Relativity, Quentin Bailey Oct 2010

New Tests Of General Relativity, Quentin Bailey

Publications

The last decade has seen a rapid increase in the number of precision tests of relativity. This research has been motivated by the intriguing possibility that tiny deviations from relativity might arise in the underlying theory that is widely believed to successfully mesh General Relativity (GR) with quantum physics. Many of these tests have been analyzed within an effective field theory framework which generically describes possible deviations from exact relativity and contains some traditional test frameworks as limiting cases. One part of the activity has been a resurgence of interest in tests of relativity in the Minkowski-spacetime context, where Lorentz …


The Trilinear Hamiltonian: A Zero-Dimensional Model Of Hawking Radiation From A Quantized Source, Paul D. Nation, Miles P. Blencowe Sep 2010

The Trilinear Hamiltonian: A Zero-Dimensional Model Of Hawking Radiation From A Quantized Source, Paul D. Nation, Miles P. Blencowe

Dartmouth Scholarship

We investigate a quantum parametric amplifier with dynamical pump mode, viewed as a zero-dimensional model of Hawking radiation from an evaporating black hole. We derive the conditions under which the spectrum of particles generated from vacuum fluctuations deviates from the thermal spectrum predicted for the conventional parametric amplifier. We find that significant deviations arise when the pump mode (black hole) has emitted nearly half of its initial energy into the signal (Hawking radiation) and idler (in-falling particle) modes. As a model of black hole dynamics, this finding lends support to the view that late-time Hawking radiation contains information about the …


Casimir Forces And Non-Newtonian Gravitation, Roberto Onofrio Oct 2006

Casimir Forces And Non-Newtonian Gravitation, Roberto Onofrio

Dartmouth Scholarship

The search for non-relativistic deviations from Newtonian gravitation can lead to new phenomena signalling the unification of gravity with the other fundamental interactions. Various recent theoretical frameworks indicate a possible window for non-Newtonian forces with gravitational coupling strength in the micrometre range. The major expected background in the same range is attributable to the Casimir force or variants of it if dielectric materials, rather than conducting ones, are considered. Here we review the measurements of the Casimir force performed so far in the micrometre range and how they determine constraints on non-Newtonian gravitation, also discussing the dominant sources of false …


Multivalued Logic, Neutrosophy And Schrodinger Equation, Florentin Smarandache, Victor Christianto Dec 2005

Multivalued Logic, Neutrosophy And Schrodinger Equation, Florentin Smarandache, Victor Christianto

Branch Mathematics and Statistics Faculty and Staff Publications

This book was intended to discuss some paradoxes in Quantum Mechanics from the viewpoint of Multi-Valued-logic pioneered by Lukasiewicz, and a recent concept Neutrosophic Logic. Essentially, this new concept offers new insights on the idea of ‘identity’, which too often it has been accepted as given. Neutrosophy itself was developed in attempt to generalize Fuzzy-Logic introduced by L. Zadeh. While some aspects of theoretical foundations of logic are discussed, this book is not intended solely for pure mathematicians, but instead for physicists in the hope that some of ideas presented herein will be found useful. The book is motivated by …