Open Access. Powered by Scholars. Published by Universities.®

Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 13 of 13

Full-Text Articles in Physics

Near- And Far- Field Optical Response Of Ensembles Of Nanostructures, Lauren Zundel Aug 2023

Near- And Far- Field Optical Response Of Ensembles Of Nanostructures, Lauren Zundel

Physics & Astronomy ETDs

The ability of metallic nanostructures to support collective oscillations of their conduction electrons, known as surface plasmons, makes them attractive candidates for a wide range of applications in areas as diverse as cancer therapy, biosensing, and solar energy harvesting. These applications are especially promising for periodic arrays of nanostructures, which can support collective modes known as lattice resonances, and for nanostructures with extreme aspect ratios that give rise to enhanced light-matter interaction. In this Thesis, we employ a coupled dipole model to theoretically explore the lattice resonances supported by complex arrays of nanoparticles containing multiple nanoparticles per unit cell. We …


Exploring Cathodoluminescence Evident Features Of Tungsten Disulfide, Molybdenum Disulfide, And Tungsten-Sulfide-Selenide, Nathan Mayer Nov 2022

Exploring Cathodoluminescence Evident Features Of Tungsten Disulfide, Molybdenum Disulfide, And Tungsten-Sulfide-Selenide, Nathan Mayer

Undergraduate Theses

Cathodoluminescence (CL) microscopy can be used to characterize the quantum optical behaviors of two-dimensional nanostructures. To investigate this behavior, we mounted flakes of tungsten disulfide (WS2), molybdenum disulfide (MoS2), and tungsten-sulfide-selenide Janus structures (WSSe) on a SiO2 substrate and analyzed these samples under both high vacuum and low H2O vacuum conditions using a scanning electron microscope. We then captured CL and secondary-electron images of the samples at multiple electron-beam energies and currents (5 keV to 30 keV, and 0.5 nA to 5 nA, respectively). We used a range of beam currents and …


Mos Compatible Deposited Materials For Optical Interconnects, Simone Iadanza Jun 2022

Mos Compatible Deposited Materials For Optical Interconnects, Simone Iadanza

Theses

The recent years' exponential growth of data transmission in datacom and telecom technology (such as in Wavelength Division Multiplexing - WDM) has highlighted the energy consumption challenges of electronics, shifting research and industry interest towards optical interconnects. Novel and more efficient integrated photonics is being given the objective to face the ever-increasing demand for speed and bandwidth. This has initiated, in both industrial and academic environments, a quest for low-power, compact and cost-effective optical interconnects that can be integrated on electronic boards of Datacentres and transceivers all over the world. In this thesis, different types of WDM compatible Hybrid External …


Fundamental Aspects Of The Interaction Between Light And Nanostructures, Stephen Keith Sanders Jul 2021

Fundamental Aspects Of The Interaction Between Light And Nanostructures, Stephen Keith Sanders

Physics & Astronomy ETDs

Recent breakthroughs in nanophotonics have brought new opportunities to control and manipulate light at the nanoscale. The optical properties of metallic nanostructures have attracted particular interest because of their plasmon resonances, which couple strongly with visible light, and generate large near-field enhancements in their vicinity. In the first part of this thesis, we investigate the fundamental limits of the local density of photonic states near nanostructures by analyzing a sum rule relating its spectral integral to the field induced by a static dipole. Next, we analyze how the design of metallic nanoantennas can benefit from incorporating active materials that display …


Statistical And Variational Modeling And Analysis Of Passive Integrated Photonic Devices, Norbert Dinyi Agbodo May 2021

Statistical And Variational Modeling And Analysis Of Passive Integrated Photonic Devices, Norbert Dinyi Agbodo

Legacy Theses & Dissertations (2009 - 2024)

The success of Si as a platform for photonic devices and the associated availabilityof wafer-scale, ultra-high resolution lithography for Si CMOS has helped lead to the rapid advance of Si-based integrated photonics manufacturing over the past decade. This evolution is nearing the point of integration of Si-based photonics together with Si-CMOS for compact, high speed, high bandwidth, and cost-effective devices. However, due to the sensitive nature of passive and active photonic devices, variations inherent in wafer-based fabrication processes can lead to unacceptable levels of performance variation both within a give die and across a given wafer. Fully understanding the role …


Multifunctional Properties Of Gan Nws Applied To Nanometrology, Nanophotonics, And Scanning Probe Microscopy/Lithography, Mahmoud Behzadirad May 2019

Multifunctional Properties Of Gan Nws Applied To Nanometrology, Nanophotonics, And Scanning Probe Microscopy/Lithography, Mahmoud Behzadirad

Optical Science and Engineering ETDs

GaN nanowires are promising for optical and optoelectronic applications because of their waveguiding properties and large optical bandgap. Recent researches have shown superior mechanical properties of GaN nanowires which promises their use in new research areas e.g. nanometrology. In this work, we develop a scalable two-step top-down approach using interferometric lithography as well a bottom-up growth of NWs using MOCVD, to manufacture highly-ordered arrays of nanowires with atomic surface roughness and desired aspect-ratios to be used in nanophotonics and atomic precision metrology and lithography. Using this method, uniform nanowire arrays were achieved over large-areas (~1 mm2) with aspect-ratio …


Investigation Of Optical Second Harmonic Generation From Si (100) With Process Tailored Surface & Embedded Ag Nanostructures For Advanced Si Nonlinear Nanophotonics, Gourav Bhowmik Jan 2019

Investigation Of Optical Second Harmonic Generation From Si (100) With Process Tailored Surface & Embedded Ag Nanostructures For Advanced Si Nonlinear Nanophotonics, Gourav Bhowmik

Legacy Theses & Dissertations (2009 - 2024)

The challenge of current microelectronic architecture in transmission bandwidth and power consumption can be potentially solved by using silicon photonics technologies that are compatible with modern CMOS fabrication. One of the critical active photonic devices for Si photonics is a Si based optical modulator. Most of the reported silicon modulators rely on the free carrier plasma dispersion effect. In those cases, a weak change of the refractive index obtained by carrier accumulation, injection or depletion is utilized in a Mach-Zehnder interferometer or a microring resonator to achieve intensity modulation, rendering them difficult for chip-level implementation due to a large footprint …


Wavelength-Selective Metamaterial Absorber And Emitter, Zhigang Li Jan 2019

Wavelength-Selective Metamaterial Absorber And Emitter, Zhigang Li

Doctoral Dissertations

"Electromagnetic absorbers and emitters have been attracting interest in lots of fields, which are significantly revitalized because of the novel properties brought by the development of the metamaterials, the artificially designed materials. Metamaterials broadens the approaches to design the electromagnetic absorbers and emitters, making it possible to obtain the perfect absorption or emission at the wavelengths covering a wide range. Metamaterial absorbers and emitters are promising for various applications, including solar thermal-photovoltaics and thermal-photovoltaics for energy harvesting, chemical and biomedical sensors, nanoscale imaging and color printing. This work focuses on three aspects (materials, structures and design methods) to improve the …


Optical Forces Generated By Plasmonic Nanostructures, Matthew A. Moocarme Feb 2017

Optical Forces Generated By Plasmonic Nanostructures, Matthew A. Moocarme

Dissertations, Theses, and Capstone Projects

For millennia, scientists have sought to uncover the secrets of what holds the world together. Optical physicists are often at the forefront, unraveling material properties through investigations of light-matter interactions. As the field has progressed, the smallest unit at which matter can be probed and manipulated has subsequently decreased. The resulting sub-field nanophotonics- which reflects the processing of light at the nanoscale- has blossomed into a vast design space for both applied and theoretical researchers. Plasmonics, the phenomena by which the electron-density of a material oscillates in response to incident electromagnetic radiation, is a subject that has excited nanophotonics researchers …


Plasmonic Devices Based On Transparent Conducting Oxides For Near Infrared Applications, Kim Jongbum Dec 2016

Plasmonic Devices Based On Transparent Conducting Oxides For Near Infrared Applications, Kim Jongbum

Open Access Dissertations

In the past decade, there have been many breakthroughs in the field of plasmonics and nanophotonics that have enabled optical devices with unprecedented functionalities. Even though remarkable demonstration of at photonic devices has been reported, constituent materials are limited to the noble metals such as gold (Au) and silver (Ag) due to their abundance of free electrons which enable the support of plasmon resonances in the visible range. With the strong demand for extension of the optical range of plasmonic applications, it is now a necessity to explore and develop alternative materials which can overcome intrinsic issues of noble metals …


Tailoring Optical And Plasmon Resonances In Core-Shell And Core-Multishell Nanowires, Sarath Ramadurgam Jan 2016

Tailoring Optical And Plasmon Resonances In Core-Shell And Core-Multishell Nanowires, Sarath Ramadurgam

Open Access Dissertations

Semiconductor nanowires (NWs) are sub-wavelength structures which exhibit strong optical (Mie) resonances in the visible range. In addition to such optical resonances, the localized surface plasmon resonances (LSPR) in metal and semiconductor (or dielectric) based core-shell (CS) and core-multishell (CMS) NWs can be tailored to achieve novel negative-index metamaterials (NIM), extreme absorbers, invisibility cloaks and sensors. Particularly, in this dissertation, the versatility of CS and CMS NWs for the design of negative-index metamaterials in the visible range and, plasmonic light harvesting in ultrathin photocatalyst layers for water splitting are studied.

Utilizing the LSPR in the metal layer and the magnetic …


Nanoscale Control Of Gap-Plasmon Enhanced Optical Processes, Chatdanai Lumdee Jan 2015

Nanoscale Control Of Gap-Plasmon Enhanced Optical Processes, Chatdanai Lumdee

Electronic Theses and Dissertations

Surface plasmon resonances of metal nanostructures have been studied intensely in recent years. The strong plasmon-mediated electric field enhancement and field confinement well beyond the diffraction limit has been demonstrated to improve the performance of optical devices including ultrasensitive sensors, light emitters, and optical absorbers. A plasmon resonance mode of particular recent interest is the gap plasmon resonance that occurs on closely spaced metallic structures. In contrast to plasmon resonances supported by isolated metal nanostructures, coupled nanostructures provide additional spectral and spatial control over the plasmon resonance response. For example, the resonance frequencies of metal nanoparticle dimers depend strongly on …


The Study Of Nanophotonic Switching Mechanisms In Photonic And Metallic Heterostructures, Joel Cox Aug 2013

The Study Of Nanophotonic Switching Mechanisms In Photonic And Metallic Heterostructures, Joel Cox

Electronic Thesis and Dissertation Repository

In this thesis, nanophotonic switching mechanisms and light-matter interactions are explored in photonic and metallic heterostructures and nanocomposites. These heterostructures are made using various combinations of photonic crystals (PCs), quantum dots (QDs), and graphene or metal nanoparticles (MNPs).

PC heterostructures are formed by combining different PCs so that photons in a specific energy range can propagate in certain regions along one direction and cannot propagate in others. This band structure engineering is used to form photonic quantum wells (PQWs) that have discrete energy states along one dimension. By simulating the photon transmission along the direction of confinement, resonant photon tunnelling …