Open Access. Powered by Scholars. Published by Universities.®

Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 2 of 2

Full-Text Articles in Physics

Hydrodynamic And Physicochemical Interactions Between An Active Janus Particle And An Inactive Particle, Jessica S. Rosenberg Jun 2023

Hydrodynamic And Physicochemical Interactions Between An Active Janus Particle And An Inactive Particle, Jessica S. Rosenberg

Dissertations, Theses, and Capstone Projects

Active matter is an area of soft matter science in which units consume energy and turn it into autonomous motion. Groups of these units – whether flocks of birds, bacterial colonies, or even collections of synthetically-made active particles – may exhibit complex behavior on large scales. While the large-scale picture is of great importance, so is the microscopic scale. Studying the individual particles that make up active matter will allow us to understand how they move, and whether and under what circumstances their activity can be controlled.

Here we delve into the world of active matter by studying colloidal-sized (100 …


Long-Range Aceo Phenomena In Microfluidic Channel, Diganta Dutta, Keifer Smith, Xavier Palmer Jan 2023

Long-Range Aceo Phenomena In Microfluidic Channel, Diganta Dutta, Keifer Smith, Xavier Palmer

Electrical & Computer Engineering Faculty Publications

Microfluidic devices are increasingly utilized in numerous industries, including that of medicine, for their abilities to pump and mix fluid at a microscale. Within these devices, microchannels paired with microelectrodes enable the mixing and transportation of ionized fluid. The ionization process charges the microchannel and manipulates the fluid with an electric field. Although complex in operation at the microscale, microchannels within microfluidic devices are easy to produce and economical. This paper uses simulations to convey helpful insights into the analysis of electrokinetic microfluidic device phenomena. The simulations in this paper use the Navier–Stokes and Poisson Nernst–Planck equations solved using COMSOL …