Open Access. Powered by Scholars. Published by Universities.®

Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 6 of 6

Full-Text Articles in Physics

Deep Underground Neutrino Experiment (Dune) Near Detector Conceptual Design Report, V. Hewes, Adam Abed Abud, Roberto Acciarri, Mario Acero, Giorge Adamov, David Adams, Marco Adinolfi, Antoni Aduszkiewicz, Zubayer Ahmad, Jhanzeb Ahmed, Tyler Alion, Saul Andrew Alton, Pablo Amedo, John Anderson, Costas Andreopoulos, Michael P. Andrews, Fenompanirina Andrianala, Sofia Andringa, Nikolay Anfimov, Artur Ankowski, Roberto Petti, Et. Al. Sep 2021

Deep Underground Neutrino Experiment (Dune) Near Detector Conceptual Design Report, V. Hewes, Adam Abed Abud, Roberto Acciarri, Mario Acero, Giorge Adamov, David Adams, Marco Adinolfi, Antoni Aduszkiewicz, Zubayer Ahmad, Jhanzeb Ahmed, Tyler Alion, Saul Andrew Alton, Pablo Amedo, John Anderson, Costas Andreopoulos, Michael P. Andrews, Fenompanirina Andrianala, Sofia Andringa, Nikolay Anfimov, Artur Ankowski, Roberto Petti, Et. Al.

Faculty Publications

The Deep Underground Neutrino Experiment (DUNE) is an international, world-class experiment aimed at exploring fundamental questions about the universe that are at the forefront of astrophysics and particle physics research. DUNE will study questions pertaining to the preponderance of matter over antimatter in the early universe, the dynamics of supernovae, the subtleties of neutrino interaction physics, and a number of beyond the Standard Model topics accessible in a powerful neutrino beam. A critical component of the DUNE physics program involves the study of changes in a powerful beam of neutrinos, i.e., neutrino oscillations, as the neutrinos propagate a long distance. …


Deep Underground Neutrino Experiment (Dune) Near Detector Conceptual Design Report, A. Abed Abud, B. Abi, R. Acciarri, M. A. Acero, G. Adamov, D. Adams, M. Adinolfi, A. Aduzskiewicz, Z. Ahmad, J. Ahmed, T. Alion, S. Alonso Monsalve, M. Alrashed, C. Alt, A. Alton, P. Amedo, J. Anderson, C. Andreopoulos, M. P. Andrews, F. Andrianala, Roberto Petti, Et. Al. Sep 2021

Deep Underground Neutrino Experiment (Dune) Near Detector Conceptual Design Report, A. Abed Abud, B. Abi, R. Acciarri, M. A. Acero, G. Adamov, D. Adams, M. Adinolfi, A. Aduzskiewicz, Z. Ahmad, J. Ahmed, T. Alion, S. Alonso Monsalve, M. Alrashed, C. Alt, A. Alton, P. Amedo, J. Anderson, C. Andreopoulos, M. P. Andrews, F. Andrianala, Roberto Petti, Et. Al.

Faculty Publications

The Deep Underground Neutrino Experiment (DUNE) is an international, world-class experiment aimed at exploring fundamental questions about the universe that are at the forefront of astrophysics and particle physics research. DUNE will study questions pertaining to the preponderance of matter over antimatter in the early universe, the dynamics of supernovae, the subtleties of neutrino interaction physics, and a number of beyond the Standard Model topics accessible in a powerful neutrino beam. A critical component of the DUNE physics program involves the study of changes in a powerful beam of neutrinos, i.e., neutrino oscillations, as the neutrinos propagate a long distance. …


In Situ Cosmogenic Backgrounds In The Majorana Demonstrator, Andrew Lopez Aug 2021

In Situ Cosmogenic Backgrounds In The Majorana Demonstrator, Andrew Lopez

Doctoral Dissertations

Neutrino-less double-beta decay is a proposed type of radioactive decay that, if observed, could answer several outstanding physics questions, such as "Is the neutrino its own antiparticle otherwise known as a Majorana particle?", "What is the mass of the neutrino?", and "What is the neutrino mass hierarchy?" As technology and experimental techniques improve, the sensitivity of experiments looking for rare events becomes more dependent on the backgrounds. Some of these backgrounds can be reduced using shielding techniques such as implementing a veto system, selecting radiopure components, and conducting the experiment deep underground. However some amount of cosmogenically induced backgrounds remain …


Automatic Leptonic Tensor Generation For Beyond The Standard Model (Bsm) Theories, Diego F. Lopez Gutierrez May 2021

Automatic Leptonic Tensor Generation For Beyond The Standard Model (Bsm) Theories, Diego F. Lopez Gutierrez

Macalester Journal of Physics and Astronomy

With the development of the Deep Underground Neutrino Experiment (DUNE) and Tokai-to-Hyper-Kamiokande (T2HK), we are entering the era of high-precision neutrino measurements. The colossal output of data from DUNE, plus the current data from several other neutrino experiments, will require a fast and efficient method of testing our BSM models in event generators. However, current methods for implementing a BSM theory in the event generators are prone to errors and time-consuming. We propose a novel program capable of automatically calculating the leptonic tensor for a given quantum field theory Lagrangian. This program is written in Python and utilizes the Universal …


Identifying, Analyzing, And Using Discriminatory Variables For Classification Of Neutrino Signal And Background Noise In Multivariate Analysis In The Askaryan Radio Array Experiment, Jesse Osborn Mar 2021

Identifying, Analyzing, And Using Discriminatory Variables For Classification Of Neutrino Signal And Background Noise In Multivariate Analysis In The Askaryan Radio Array Experiment, Jesse Osborn

Honors Theses

The Askaryan Radio Array Experiment, located near the South Pole, works to pinpoint specific instances of neutrinos from outside the solar system interacting with nucleons inside the Antarctic ice, emitting radio waves. I have taken data from the ARA stations which is presumed to be background noise and compared it to simulated data meant to look like a neutrino signal. I developed a suite of variables for discrimination between the two data sets, using a computer algorithm to generate a single output variable which can be used to distinguish noise events from signal events. I maximized this discrimination process for …


Lorentz Violation In Neutrino Interactions, Pranav Jayaram Seetharaman Mar 2021

Lorentz Violation In Neutrino Interactions, Pranav Jayaram Seetharaman

Physics

Both the Standard Model of particle physics and General Relativity require Lorentz symmetry as a fundamental building block. In this paper, we learn about a framework called the Standard Model Extension that allows us to determine how physical phenomenon would change if we deviated from Lorentz invariance in the Standard Model and General Relativity. We use the Standard Model Extension to analyze a specific high-energy, astrophysical neutrino interaction that is only possible if Lorentz symmetry can be broken. The interaction we look at is the decay of a neutrino into an electron-positron pair, which is not possible in conventional physics. …