Open Access. Powered by Scholars. Published by Universities.®

Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

PDF

2017

University of Nebraska - Lincoln

Discipline
Keyword
Publication

Articles 1 - 30 of 67

Full-Text Articles in Physics

Magnetocrystalline Anisotropy Of "-Fe2o3, Imran Ahamed, Rohilt Pathak, Arti Kashyap Dec 2017

Magnetocrystalline Anisotropy Of "-Fe2o3, Imran Ahamed, Rohilt Pathak, Arti Kashyap

Nebraska Center for Materials and Nanoscience: Faculty Publications

The epsilon Fe2O3 phase of iron oxide has been studied to understand the spin structure and the magnetocrystalline anisotropy in the bulk and in thin films of "-Fe2O3 and Co-doped "-Fe2O3. The preferential magnetization direction in the nanoparticles of "-Fe2O3 is along the a-axis [M. Gich et al., Chem. Mater. 18, 3889 (2006)]. Compared to the bulk band gap of 1.9 eV, the thin-film band gap is reduced to 1.3 eV in the Co-free films and to 0.7 eV in the film with partial …


Texture Development And Coercivity Enhancement In Cast Alnico 9 Magnets, Wenyong Zhang, Shah Valloppilly, Xingzhong Li, Lanping Yue, Ralph Skomski, Iver Anderson, Matthew Kramer, Wei Tang, Jeff Shield, David J. Sellmyer Dec 2017

Texture Development And Coercivity Enhancement In Cast Alnico 9 Magnets, Wenyong Zhang, Shah Valloppilly, Xingzhong Li, Lanping Yue, Ralph Skomski, Iver Anderson, Matthew Kramer, Wei Tang, Jeff Shield, David J. Sellmyer

Nebraska Center for Materials and Nanoscience: Faculty Publications

The effect of Y addition and magnetic field on texture and magnetic properties of arc-melted alnico 9 magnets has been investigated. Small additions of Y (1.5 wt.%) develop a (200) texture for the arc-melted alnico 9 magnet. Such a texture is hard to form in cast samples. To achieve this goal, we set up a high-field annealing system with a maximum operation temperature of 12500 C. This system enabled annealing in a field of 45 kOe with subsequent draw annealing for the solutionized buttons; we have been able to substantially increase remanence ratio and coercivity, from 0.70 and 1200 …


Prediction Of A Mobile Two-Dimensional Electron Gas At The Lasco3/Basno3(001) Interface, Tula R. Paudel, Evgeny Y. Tsymbal Dec 2017

Prediction Of A Mobile Two-Dimensional Electron Gas At The Lasco3/Basno3(001) Interface, Tula R. Paudel, Evgeny Y. Tsymbal

Evgeny Tsymbal Publications

Two-dimensional electron gases (2DEG) at oxide interfaces, such as LaAlO3/SrTiO3 (001), have aroused significant interest due to their high carrier density (∼1014 cm−2) and strong lateral confinement (∼1 nm). However, these 2DEGs are normally hosted by the weakly dispersive and degenerate d bands (e.g., Ti-3d bands), which are strongly coupled to the lattice, causing mobility of such 2DEGs to be relatively low at room temperature (∼1 cm2/Vs). Here, we propose using oxide host materials with the conduction bands formed from s electrons to increase carrier mobility and soften its temperature dependence. Using …


Generalized Ellipsometry On Complex Nanostructures And Low-Symmetry Materials, Alyssa Mock Dec 2017

Generalized Ellipsometry On Complex Nanostructures And Low-Symmetry Materials, Alyssa Mock

Department of Electrical and Computer Engineering: Dissertations, Theses, and Student Research

In this thesis, complex anisotropic materials are investigated and characterized by generalized ellipsometry. In recent years, anisotropic materials have gained considerable interest for novel applications in electronic and optoelectronic devices, mostly due to unique properties that originate from reduced crystal symmetry. Examples include white solid-state lighting devices which have become ubiquitous just recently, and the emergence of high-power, high-voltage electronic transistors and switches in all-electric vehicles. The incorporation of single crystalline material with low crystal symmetry into novel device structures requires reconsideration of existing optical characterization approaches. Here, the generalized ellipsometry concept is extended to include applications for materials with …


Angle-Resolved Observation Of X-Ray Second Harmonic Generation In Diamond, Björn Senfftleben Dec 2017

Angle-Resolved Observation Of X-Ray Second Harmonic Generation In Diamond, Björn Senfftleben

Department of Physics and Astronomy: Dissertations, Theses, and Student Research

This thesis reports angularly-resolved observation of X-ray second harmonic generation (XSHG) in diamond at several phase-matching geometries. The XSHG signal was produced by ultra-short, highly intense X-ray pulses with a photon energy of 9.831 keV generated by a free-electron laser. In some geometries for high pulse energies more than 10 second harmonic photons per pulse were generated.

Different phase-matched geometries were used for XSHG to investigate the angular dependence of the efficiency of the process. Furthermore, for each phase-matching condition, the quadratic dependence for second harmonic generation at each geometry was verified and the crystal rocking curves were measured. The …


Design And Construction Of A High-Current Femtosecond Gas-Phase Electron Diffraction Setup, Omid Zandi Dec 2017

Design And Construction Of A High-Current Femtosecond Gas-Phase Electron Diffraction Setup, Omid Zandi

Department of Physics and Astronomy: Dissertations, Theses, and Student Research

We designed and constructed a state-of-the-art high current ultrafast gas electron diffraction experimental setup, which resolved two main challenges that constraint temporal resolution in previous setups. These aforementioned bottlenecks were: the space charge effect due to the Coulomb expansion, and the velocity mismatch between the sub-relativistic electrons (probe) and the exciting laser pulse (pump). In our setup, the problem of space charge effect was ameliorated by compressing 90 keV photo-emitted electron pulses using a radio-frequency electric field. The compression allowed us to increase the beam current by almost two orders of magnitude higher than previously reported. We developed a laser-activated …


A Measurement Of The Cross Section At √S = 8 Tev In Pp Collisions With The Cms Detector, Ekaterina Avdeeva Dec 2017

A Measurement Of The Wγ Cross Section At √S = 8 Tev In Pp Collisions With The Cms Detector, Ekaterina Avdeeva

Department of Physics and Astronomy: Dissertations, Theses, and Student Research

A measurement of cross section of the Wγ → lνγ production in proton-proton collisions using 19.6 fb − 1 of LHC data collected by CMS detector at the center- √ of-mass collision energy of s = 8 TeV is reported. The W bosons are identified in their electron and muon decay modes. The process of Wγ production in the Standard Model (SM) involves a pure gauge boson coupling, a WWγ vertex, which allows one to test the electroweak sector of the SM in a unique way not achievable by studies of other processes. In addition to the total cross section, …


Epitaxial Thin Films Of Dirac Semimetal Antiperovskite Cu3Pdn, C. X. Quintela, N. Campbell, D. F. Shao, J. Irwin, D. T. Harris, L. Lie, T. J. Anderson, N. Reiser, X. Q. Pan, Evgeny Y. Tsymbal, M. S. Rzchowski, C B. Eom Nov 2017

Epitaxial Thin Films Of Dirac Semimetal Antiperovskite Cu3Pdn, C. X. Quintela, N. Campbell, D. F. Shao, J. Irwin, D. T. Harris, L. Lie, T. J. Anderson, N. Reiser, X. Q. Pan, Evgeny Y. Tsymbal, M. S. Rzchowski, C B. Eom

Evgeny Tsymbal Publications

The growth and study of materials showing novel topological states of matter is one of the frontiers in condensed matter physics. Among this class of materials, the nitride antiperovskite Cu3PdN has been proposed as a new three-dimensional Dirac semimetal. However, the experimental realization of Cu3PdN and the consequent study of its electronic properties have been hindered due to the difficulty of synthesizing this material. In this study, we report fabrication and both structural and transport characterization of epitaxial Cu3PdN thin films grown on (001)-oriented SrTiO3 substrates by reactive magnetron sputtering and post-annealed in …


From Quantum To Classical Interactions Between A Free Electron And A Surface, Peter Beierle Nov 2017

From Quantum To Classical Interactions Between A Free Electron And A Surface, Peter Beierle

Department of Physics and Astronomy: Dissertations, Theses, and Student Research

Quantum theory is often cited as being one of the most empirically validated theories in terms of its predictive power and precision. These attributes have led to numerous scientific discoveries and technological advancements. However, the precise relationship between quantum and classical physics remains obscure. The prevailing description is known as decoherence theory, where classical physics emerges from a more general quantum theory through environmental interaction. Sometimes referred to as the decoherence program, it does not solve the quantum measurement problem. We believe experiments performed between the microscopic and macroscopic world may help finish the program. The following considers a free …


Doubly-Excited State Effects On Two-Photon Double Ionization Of Helium By Time-Delayed, Oppositely Circularly-Polarized Attosecond Pulses, Jean Marcel Ngoko Djiokap, Anthony F. Starace Oct 2017

Doubly-Excited State Effects On Two-Photon Double Ionization Of Helium By Time-Delayed, Oppositely Circularly-Polarized Attosecond Pulses, Jean Marcel Ngoko Djiokap, Anthony F. Starace

Anthony F. Starace Publications

We study two-photon double ionization (TPDI) of helium by a pair of time-delayed (non-overlapping), oppositely circularly-polarized attosecond pulses whose carrier frequencies are resonant with 1Po doubly-excited states. All of our TPDI results are obtained by numerical solution of the two-electron time-dependent Schrödinger equation for the six-dimensional case of circularly-polarized attosecond pulses, and they are analyzed using perturbation theory (PT). As compared with the corresponding nonresonant TPDI process, we find that the doubly-excited states change the character of vortex patterns in the two-electron momentum distributions for the case of back-to-back detection of the two ionized electrons in the polarization …


Imaging Electronic Motions By Ultrafast Electron Diffraction, Hua-Chieh Shao, Anthony F. Starace Oct 2017

Imaging Electronic Motions By Ultrafast Electron Diffraction, Hua-Chieh Shao, Anthony F. Starace

Anthony F. Starace Publications

Recently ultrafast electron diffraction and microscopy have reached unprecedented temporal resolution, and transient structures with atomic precision have been observed in various reactions. It is anticipated that these extraordinary advances will soon allow direct observation of electronic motions during chemical reactions. We therefore performed a series of theoretical investigations and simulations to investigate the imaging of electronic motions in atoms and molecules by ultrafast electron diffraction. Three prototypical electronic motions were considered for hydrogen atoms. For the case of a breathing mode, the electron density expands and contracts periodically, and we show that the time-resolved scattering intensities reflect such changes …


Surfaces And Interfaces Of Magnetoelectric Oxide Systems, Shi Cao Oct 2017

Surfaces And Interfaces Of Magnetoelectric Oxide Systems, Shi Cao

Department of Physics and Astronomy: Dissertations, Theses, and Student Research

Magnetoelectric materials Cr2O3, hexagonal LuFeO3 and YbFeO3 are studied in this thesis. The surface of chromia (Cr2O3) has a surface electronic structure distinct from the bulk. Our work shows that placing a Cr2O3 single crystal into a single domain state will result in net Cr2O3 spin polarization at the boundary, even in the presence of a gold overlayer. From the Cr 2p3=2 X-ray magnetic circular dichroism signal, there is clear evidence of interface polarization with overlayers of both Pd and Pt on chromia. Cobalt thin films on Cr2O3(0001) show larger magnetic contrast in magnetic force microscopy indicating enhancement of perpendicular …


Energy-Resolved Coherent Diffraction From Laser-Driven Electronic Motion In Atoms, Hua-Chieh Shao, Anthony F. Starace Oct 2017

Energy-Resolved Coherent Diffraction From Laser-Driven Electronic Motion In Atoms, Hua-Chieh Shao, Anthony F. Starace

Anthony F. Starace Publications

We investigate theoretically the use of energy-resolved ultrafast electron diffraction to image laser-driven electronic motion in atoms. A chirped laser pulse is used to transfer the valence electron of the lithium atom from the ground state to the first excited state. During this process, the electronic motion is imaged by 100-fs and 1-fs electron pulses in energy-resolved diffraction measurements. Simulations show that the angle-resolved spectra reveal the time evolution of the energy content and symmetry of the electronic state. The time-dependent diffraction patterns are further interpreted in terms of the momentum transfer. For the case of incident 1-fs electron pulses, …


Phase Stability, Ordering Tendencies, And Magnetism In Single-Phase Fcc Au-Fe Nanoalloys, I. A. Zhuravlev, S. V. Barabash, J. M. An, K. D. Belashchenko Oct 2017

Phase Stability, Ordering Tendencies, And Magnetism In Single-Phase Fcc Au-Fe Nanoalloys, I. A. Zhuravlev, S. V. Barabash, J. M. An, K. D. Belashchenko

Department of Physics and Astronomy: Faculty Publications

Bulk Au-Fe alloys separate into Au-based fcc and Fe-based bcc phases, but L10 and L12 orderings were reported in single-phase Au-Fe nanoparticles. Motivated by these observations, we study the structural and ordering energetics in this alloy by combining density functional theory (DFT) calculations with effective Hamiltonian techniques: a cluster expansion with structural filters, and the configuration-dependent lattice deformation model. The phase separation tendency in Au-Fe persists even if the fcc-bcc decomposition is suppressed. The relative stability of disordered bcc and fcc phases observed in nanoparticles is reproduced, but the fully ordered L10 AuFe, L12 Au3Fe, and L12 AuFe3 structures are …


Alignment Of The (3D104S5S)3S1 State Of Zn Excited By Polarized Electron Impact, Nathan B. Clayburn, Timothy J. Gay Sep 2017

Alignment Of The (3D104S5S)3S1 State Of Zn Excited By Polarized Electron Impact, Nathan B. Clayburn, Timothy J. Gay

Timothy J. Gay Publications

We measure the integrated Stokes parameters of light from Zn (4s4p)43P0,1-(4s5s)53S1 transitions excited by a transversely polarized electron impact at energies between 7.0 and 8.5 eV. Our results for the electron-polarization-normalized linear polarization Stokes parameter P2, between incident electron energies 7.0 and 7.4 eV, are consistent with zero, as required by basic angular-momentum coupling considerations and by recent theoretical calculations. They are in qualitative disagreement with previous experimental results for the P2 parameter.


Three-Dimensional Nanomagnetism, Amalio Fernández-Pacheco, Robert Streubel, Olivier Fruchart, Riccardo Hertel, Peter Fischer, Russell P. Cowburn Aug 2017

Three-Dimensional Nanomagnetism, Amalio Fernández-Pacheco, Robert Streubel, Olivier Fruchart, Riccardo Hertel, Peter Fischer, Russell P. Cowburn

Robert Streubel Papers

Magnetic nanostructures are being developed for use in many aspects of our daily life, spanning areas such as data storage, sensing and biomedicine. Whereas patterned nanomagnets are traditionally two-dimensional planar structures, recent work is expanding nanomagnetism into three dimensions; a move triggered by the advance of unconventional synthesis methods and the discovery of new magnetic effects. In three-dimensional nanomagnets more complex magnetic configurations become possible, many with unprecedented properties. Here we review the creation of these structures and their implications for the emergence of new physics, the development of instrumentation and computational methods, and exploitation in numerous applications.


Ionization Enhancement And Suppression By Phase-Locked Ultrafast Pulse Pairs, David B. Foote, Y. Lin, Liang-Wen Pi, Jean Marcel Ngoko Djiokap, Anthony F. Starace, W. T. Hill Aug 2017

Ionization Enhancement And Suppression By Phase-Locked Ultrafast Pulse Pairs, David B. Foote, Y. Lin, Liang-Wen Pi, Jean Marcel Ngoko Djiokap, Anthony F. Starace, W. T. Hill

Anthony F. Starace Publications

We present the results of a study of ionization of Xe atoms by a pair of phase-locked pulses, which is characterized by interference produced by the twin peaks. Two types of interference are considered: ordinary optical interference, which changes the intensity of the composite pulse and thus the ion yield, and a quantum interference, in which the excited electron wave packets interfere. We use the measured Xe+ yield as a function of the temporal delay and/or relative phase between the peaks to monitor the interferences and compare their relative strengths. We model the interference with a pulse intensity function and …


Nanosecond X-Ray Photon Correlation Spectroscopy On Magnetic Skyrmions, M. H. Seaberg, B. Holladay, J. C.T. Lee, M. Sikorski, A. H. Reid, S. A. Montoya, G. L. Dakovski, J. D. Koralek, G. Coslovich, S. Moeller, W. F. Schlotter, R. Streubel, S. D. Kevan, P. Fischer, E. E. Fullerton, J. L. Turner, F. J. Decker, S. K. Sinha, S. Roy, J. J. Turner Aug 2017

Nanosecond X-Ray Photon Correlation Spectroscopy On Magnetic Skyrmions, M. H. Seaberg, B. Holladay, J. C.T. Lee, M. Sikorski, A. H. Reid, S. A. Montoya, G. L. Dakovski, J. D. Koralek, G. Coslovich, S. Moeller, W. F. Schlotter, R. Streubel, S. D. Kevan, P. Fischer, E. E. Fullerton, J. L. Turner, F. J. Decker, S. K. Sinha, S. Roy, J. J. Turner

Robert Streubel Papers

We report an x-ray photon correlation spectroscopy method that exploits the recent development of the two-pulse mode at the Linac Coherent Light Source. By using coherent resonant x-ray magnetic scattering, we studied spontaneous fluctuations on nanosecond time scales in thin films of multilayered Fe/Gd that exhibit ordered stripe and Skyrmion lattice phases. The correlation time of the fluctuations was found to differ between the Skyrmion phase and near the stripe-Skyrmion boundary. This technique will enable a significant new area of research on the study of equilibrium fluctuations in condensed matter.


Adiabatic-Limit Coulomb Factors For Photoelectron And High-Order-Harmonic Spectra, M. V. Frolov, N. L. Manakov, A. A. Minina, S. V. Popruzhenko, Anthony F. Starace Aug 2017

Adiabatic-Limit Coulomb Factors For Photoelectron And High-Order-Harmonic Spectra, M. V. Frolov, N. L. Manakov, A. A. Minina, S. V. Popruzhenko, Anthony F. Starace

Anthony F. Starace Publications

A momentum-dependent Coulomb factor in the probability for nonlinear ionization of atoms by a strong low-frequency laser field is calculated analytically in the adiabatic approximation. Expressions for this Coulomb factor, valid for an arbitrary laser pulse waveform, are obtained and analyzed in detail for the cases of linear and circular polarizations. The dependence of the Coulomb factor on the photoelectron momentum is shown to be significant in both cases. Using a similar technique, the Coulomb factor for emission of high-order harmonics by an atom in a bichromatic laser field is also calculated. In contrast to the case of a single-frequency …


Electrical Characterization Of Irradiated Semiconducting Amorphous Hydrogenated Boron Carbide, George Glen Peterson Aug 2017

Electrical Characterization Of Irradiated Semiconducting Amorphous Hydrogenated Boron Carbide, George Glen Peterson

Department of Mechanical and Materials Engineering: Dissertations, Theses, and Student Research

Semiconducting amorphous partially dehydrogenated boron carbide has been explored as a neutron voltaic for operation in radiation harsh environments, such as on deep space satellites/probes. A neutron voltaic device could also be used as a solid state neutron radiation detector to provide immediate alerts for radiation workers/students, as opposed to the passive dosimetry badges utilized today. Understanding how the irradiation environment effects the electrical properties of semiconducting amorphous partially dehydrogenated boron carbide is important to predicting the stability of these devices in operation. p-n heterojunction diodes were formed from the synthesis of semiconducting amorphous partially dehydrogenated boron carbide on silicon …


Novel Half-Metallic And Spin-Gapless Heusler Compounds, Yunlong Jin Aug 2017

Novel Half-Metallic And Spin-Gapless Heusler Compounds, Yunlong Jin

Department of Physics and Astronomy: Dissertations, Theses, and Student Research

This thesis is devoted to experimental studies of Heusler compounds CoFeCrAl, CoFeCrX (X = Si, Ge) and Mn2PtSn. These Heusler alloys present an interesting class of ferromagnetic materials for spintronic applications since they are predicted to be spin gapless semiconductors and have half-metallic properties with 100 % spin polarization at the Fermi level. In this thesis, the structural, magnetic, spin-polarization and electron- transport properties of the fabricated alloys were studied. CoFeCrAl thin films deposited on MgO exhibit nearly perfect epitaxy and a high degree of L21 Heusler order. All considered types of chemical disorder destroy the spin-gapless …


Model Of Orbital Populations For Voltage-Controlled Magnetic Anisotropy In Transition-Metal Thin Films, Jia Zhang, Pavel V. Lukashev, Sitaram Jaswal, Evgeny Y. Tsymbal Jul 2017

Model Of Orbital Populations For Voltage-Controlled Magnetic Anisotropy In Transition-Metal Thin Films, Jia Zhang, Pavel V. Lukashev, Sitaram Jaswal, Evgeny Y. Tsymbal

Evgeny Tsymbal Publications

Voltage-controlled magnetic anisotropy (VCMA) is an efficient way to manipulate the magnetization states in nanomagnets and is promising for low-power spintronic applications. The underlying physical mechanism for VCMA is known to involve a change in the d orbital occupation on the transition-metal interface atoms with an applied electric field. However, a simple qualitative picture of how this occupation controls the magnetocrystalline anisotropy (MCA) and even why in certain cases the MCA has the opposite sign remains elusive. In this paper, we exploit a simple model of orbital populations to elucidate a number of features typical for the interface MCA, and …


Kinematical Vortices In Double Photoionization Of Helium By Attosecond Pulses, Jean Marcel Ngoko Djiokap, A. V. Meremianin, N. L. Manakov, S. X. Hu, L. B. Madsen, Anthony F. Starace Jul 2017

Kinematical Vortices In Double Photoionization Of Helium By Attosecond Pulses, Jean Marcel Ngoko Djiokap, A. V. Meremianin, N. L. Manakov, S. X. Hu, L. B. Madsen, Anthony F. Starace

Anthony F. Starace Publications

Two-armed helical vortex structures are predicted in the two-electron momentum distributions produced in double photoionization (DPI) of the He atom by a pair of time-delayed elliptically polarized attosecond pulses with opposite helicities. These predictions are based upon both a first-order perturbation theory analysis and numerical solutions of the two-electron, time-dependent Schrödinger equation in six spatial dimensions. The helical vortex structures originate from Ramsey interference of a pair of ionized two-electron wave packets, each having a total angular momentum of unity, and appear in the sixfold differential DPI probability distribution for any energy partitioning between the two electrons. The vortex structures …


Spin-Polarized Two-Dimensional Electron Gas At Gdtio3/Srtio3 Interfaces: Insight From First-Principles Calculations, J. Betancourt, Tula R. Paudel, Evgeny Y. Tsymbal, J. P. Velev Jul 2017

Spin-Polarized Two-Dimensional Electron Gas At Gdtio3/Srtio3 Interfaces: Insight From First-Principles Calculations, J. Betancourt, Tula R. Paudel, Evgeny Y. Tsymbal, J. P. Velev

Evgeny Tsymbal Publications

Two-dimensional electron gases (2DEGs) at oxide interfaces have been a topic of intensive research due to their high carrier mobility and strong confinement. Additionally, strong correlations in the oxide materials can give rise to new and interesting physics, such as magnetism and metal-insulator transitions at the interface. Using first-principles calculations based on density functional theory, we demonstrate the presence of a highly spin-polarized 2DEG at the interface between the Mott insulator GdTiO3 and a band insulator SrTiO3. The strong correlations in the dopant cause ferromagnetic alignment of the interface Ti atoms and result in a fully spin-polarized …


Simulation Of Alnico Coercivity, Liqin Ke, Ralph Skomski, Todd D. Hoffman, Lin Zhoue, Wei Tang, Duane D. Johnson, Matthew J. Kramer, Iver E. Anderson, C.Z. Wang Jul 2017

Simulation Of Alnico Coercivity, Liqin Ke, Ralph Skomski, Todd D. Hoffman, Lin Zhoue, Wei Tang, Duane D. Johnson, Matthew J. Kramer, Iver E. Anderson, C.Z. Wang

Nebraska Center for Materials and Nanoscience: Faculty Publications

Micromagnetic simulations of alnico show substantial deviations from Stoner-Wohlfarth behavior due to the unique size and spatial distribution of the rod-like Fe-Co phase formed during spinodal decomposition in an external magnetic field. The maximum coercivity is limited by single-rod effects, especially deviations from ellipsoidal shape, and by interactions between the rods. Both the exchange interaction between connected rods and magnetostatic interaction between rods are considered, and the results of our calculations show good agreement with recent experiments. Unlike systems dominated by magnetocrystalline anisotropy, coercivity in alnico is highly dependent on size, shape, and geometric distribution of the Fe-Co phase, all …


Elastic Properties Of Superconductors And Materials With Weakly Correlated Spins, Christian Binek Jul 2017

Elastic Properties Of Superconductors And Materials With Weakly Correlated Spins, Christian Binek

Christian Binek Publications

It is shown that in the ergodic regime, the temperature dependence of Young’s modulus is solely determined by the magnetic properties of a material. For the large class of materials with paramagnetic or diamagnetic response, simple functional forms of the temperature derivative of Young’s modulus are derived and compared with experimental data and empirical results. Superconducting materials in the Meissner phase are ideal diamagnets. As such, they display remarkable elastic properties. Constant diamagnetic susceptibility gives rise to a temperature independent elastic modulus for ceramic and single crystalline superconductors alike. The thermodynamic approach established in this report, paves the way to …


Distance Verification For Classical And Quantum Ldpc Codes, Ilya Dumer, Alexey Kovalev, Leonid P. Pryadko Jul 2017

Distance Verification For Classical And Quantum Ldpc Codes, Ilya Dumer, Alexey Kovalev, Leonid P. Pryadko

Department of Physics and Astronomy: Faculty Publications

The techniques of distance verification known for general linear codes are first applied to the quantum stabilizer codes. Then, these techniques are considered for classical and quantum (stabilizer) low-density-parity-check (LDPC) codes. New complexity bounds for distance verification with provable performance are derived using the average weight spectra of the ensembles of LDPC codes. These bounds are expressed in terms of the erasure-correcting capacity of the corresponding ensemble. We also present a new irreducible-cluster technique that can be applied to any LDPC code and takes advantage of parity-checks’ sparsity for both the classical and quantum LDPC codes. This technique reduces complexity …


Reversible Spin Texture In Ferroelectric Hfo2, L. L. Tao, Tula R. Paudel, Alexey Kovalev, Evgeny Tsymbal Jun 2017

Reversible Spin Texture In Ferroelectric Hfo2, L. L. Tao, Tula R. Paudel, Alexey Kovalev, Evgeny Tsymbal

Evgeny Tsymbal Publications

Spin-orbit coupling effects occurring in noncentrosymmetric materials are known to be responsible for nontrivial spin configurations and a number of emergent physical phenomena. Ferroelectric materials may be especially interesting in this regard due to reversible spontaneous polarization making possible a nonvolatile electrical control of the spin degrees of freedom. Here, we explore a technologically relevant oxide material, HfO2, which has been shown to exhibit robust ferroelectricity in a noncentrosymmetric orthorhombic phase. Using theoretical modelling based on density-functional theory, we investigate the spin-dependent electronic structure of the ferroelectric HfO2 and demonstrate the appearance of chiral spin textures driven …


Electronic Structure And Direct Observation Of Ferrimagnetism In Multiferroic Hexagonal Ybfeo3, Shi Cao, Kishan Sinha, Xin Zhang, Xiaozhe Zhang, Xiao Wang, Yuewei Yin, Alpha T. N’Diaye, Jian Wang, David J. Keavney, Tula R. Paudel, Yaohua Liu, Xuemei Cheng, Evgeny Y. Tsymbal, Peter A. Dowben, Xiaoshan Xu Jun 2017

Electronic Structure And Direct Observation Of Ferrimagnetism In Multiferroic Hexagonal Ybfeo3, Shi Cao, Kishan Sinha, Xin Zhang, Xiaozhe Zhang, Xiao Wang, Yuewei Yin, Alpha T. N’Diaye, Jian Wang, David J. Keavney, Tula R. Paudel, Yaohua Liu, Xuemei Cheng, Evgeny Y. Tsymbal, Peter A. Dowben, Xiaoshan Xu

Evgeny Tsymbal Publications

The magnetic interactions between rare-earth and Fe ions in hexagonal rare-earth ferrites (h-RFeO3), may amplify the weak ferromagnetic moment on Fe, making these materials more appealing as multiferroics. To elucidate the interaction strength between the rare-earth and Fe ions as well as the magnetic moment of the rare-earth ions, element-specific magnetic characterization is needed. Using x-ray magnetic circular dichroism, we have studied the ferrimagnetism in h-YbFeO3 by measuring the magnetization of Fe and Yb separately. The results directly show antialignment of magnetization of Yb and Fe ions in h-YbFeO3 at low temperature, …


Vortex Circulation Patterns In Planar Microdisk Arrays, Sven Velten, Robert Streubel, Alan Farhan, Noah Kent, Mi Young Im, Andreas Scholl, Scott Dhuey, Carolin Behncke, Guido Meier, Peter Fischer Jun 2017

Vortex Circulation Patterns In Planar Microdisk Arrays, Sven Velten, Robert Streubel, Alan Farhan, Noah Kent, Mi Young Im, Andreas Scholl, Scott Dhuey, Carolin Behncke, Guido Meier, Peter Fischer

Robert Streubel Papers

We report a magnetic X-ray microscopy study of the pattern formation of circulation in arrays of magnetic vortices ordered in a hexagonal and a honeycomb lattice. In the honeycomb lattice, we observe at remanence an ordered phase of alternating circulations, whereas in the hexagonal lattice, small regions of alternating lines form. A variation in the edge-to-edge distance shows that the size of those regions scales with the magnetostatic interaction. Micromagnetic simulations reveal that the patterns result from the formation of flux closure states during the nucleation process.