Open Access. Powered by Scholars. Published by Universities.®

Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 3 of 3

Full-Text Articles in Physics

Dispersion Of A Solute In Hartmann Two-Fluid Flow Between Two Parallel Plates, J. P. Kumar, J. C. Umavathi Dec 2013

Dispersion Of A Solute In Hartmann Two-Fluid Flow Between Two Parallel Plates, J. P. Kumar, J. C. Umavathi

Applications and Applied Mathematics: An International Journal (AAM)

The paper presents an analytical solution for the dispersion of a solute in a conducting immiscible fluid flowing between two parallel plates in the presence of a transverse magnetic field. The fluids in both the regions are incompressible, electrically conducting and the transport properties are assumed to be constant. The channel walls are assumed to be electrically insulating. Separate solutions for each fluid are obtained and these solutions are matched at the interface using suitable matching conditions. The results are tabulated for various values of viscosity ratio, pressure gradient and Hartman number on the effective Taylor dispersion coefficient and volumetric …


The Propagation Of Light Through Dark Matter, Audrey Kvam Jan 2013

The Propagation Of Light Through Dark Matter, Audrey Kvam

Summer Research

A concordance of observations indicates that around 80% of the matter in the universe is some unknown dark matter. This dark matter could be comprised of a single structureless particle, but much richer theories exist. Signals from the DAMA, CoGeNT, and CDMS-II dark matter detectors along with the non-observation of dark matter by other detectors motivate theories of composite dark matter along with a “dark” electromagnetic sector. The composite models propose baryon-like or atom-like dark matter. If photons kinetically mix with the “dark” photons, then light traveling through dark matter will experience dispersion. We expect the dispersion to be approximated …


Femtosecond Photoelectron Point Projection Microscope, Erik Quinonez, Jonathan Handali, Brett Barwick Jan 2013

Femtosecond Photoelectron Point Projection Microscope, Erik Quinonez, Jonathan Handali, Brett Barwick

Faculty Scholarship

By utilizing a nanometer ultrafast electron source in a point projection microscope we demonstrate that images of nanoparticles with spatial resolutions of the order of 100 nanometers can be obtained. The duration of the emission process of the photoemitted electrons used to make images is shown to be of the order of 100 fs using an autocorrelation technique. The compact geometry of this photoelectron point projection microscope does not preclude its use as a simple ultrafast electron microscope, and we use simple analytic models to estimate temporal resolutions that can be expected when using it as a pump-probe ultrafast electron …