Open Access. Powered by Scholars. Published by Universities.®

Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 8 of 8

Full-Text Articles in Physics

Multimessenger Astronomy: Modeling Gravitational And Electromagnetic Radiation From A Stellar Binary System, Kevin Kern Dec 2011

Multimessenger Astronomy: Modeling Gravitational And Electromagnetic Radiation From A Stellar Binary System, Kevin Kern

Honors Theses

Our Solar System is one of roughly 100 billion other stars that make up the Milky Way Galaxy. Two-thirds of all stars are paired off, forming a gravitational bond between one another. Such systems are known as stellar binaries. Although these binaries are prevalent there is much yet to be learned about their formation, evolution, and interactions. The approach taken in this thesis is to produce simulated data representing the expected measurements that an observational astronomer would collect. Specifically, we have simulated the data from an eclipsing binary light curve, spectroscopic velocity curve, and the gravitational wave times series form …


Characterization Of Enhanced Interferometric Gravitational Wave Detectors And Studies Of Numeric Simulations For Compact-Binary Coalescences, Larne Pekowsky Dec 2011

Characterization Of Enhanced Interferometric Gravitational Wave Detectors And Studies Of Numeric Simulations For Compact-Binary Coalescences, Larne Pekowsky

Physics - Dissertations

Gravitational waves are a consequence of the general theory of relativity. Direct detection of such waves will provide a wealth of information about physics, astronomy, and cosmology. A worldwide effort is currently underway to make the first direct detection of gravitational waves. The global network of detectors includes the Laser Interferometer Gravitational-wave Observatory (LIGO), which recently completed its sixth science run.

A particularly promising source of gravitational waves is a binary system consisting of two neutron stars and/or black holes. As the objects orbit each other they emit gravitational radiation, lose energy, and spiral inwards. This produces a characteristic ``chirp'' …


Searching For Gravitational Waves From Compact Binary Coalescence Using Ligo And Virgo Data, Collin Capano Dec 2011

Searching For Gravitational Waves From Compact Binary Coalescence Using Ligo And Virgo Data, Collin Capano

Physics - Dissertations

This thesis describes current efforts to search for gravitational waves from compact binary coalescences (CBCs) by the LIGO Scientific Collaboration (LSC) and the Virgo Collaboration. We briefly review the physics of gravitational-wave emission and detection, describing how gravitational waves are emitted from "inspiraling" compact stellar mass objects and how the LSC and Virgo try to detect them using interferometers. Next we review the data-analysis principles used to search for potential signals in the detectors' noise. These principles are employed by ``ihope," which is the data-analysis pipeline used to search for CBCs. We describe each step in this pipeline and discuss …


Sparse Spectral-Tau Method For The Three-Dimensional Helically Reduced Wave Equation On Two-Center Domains, Stephen R. Lau, Richard H. Price Sep 2011

Sparse Spectral-Tau Method For The Three-Dimensional Helically Reduced Wave Equation On Two-Center Domains, Stephen R. Lau, Richard H. Price

Physics and Astronomy Faculty Publications and Presentations

We describe a multidomain spectral-tau method for solving the three-dimensional helically reduced wave equation on the type of two-center domain that arises when modeling compact binary objects in astrophysical applications. A global two-center domain may arise as the union of Cartesian blocks, cylindrical shells, and inner and outer spherical shells. For each such subdomain, our key objective is to realize certain (differential and multiplication) physical-space operators as matrices acting on the corresponding set of modal coefficients. We then achieve sparse realizations through the integration “preconditioning” of Coutsias, Hagstrom, Hesthaven, and Torres. Since ours is the first three-dimensional multidomain implementation of …


Beating The Spin-Down Limit On Gravitational Wave Emission From The Vela Pulsar, J. Abadie, B. P. Abbott, R. Abbott, M. Abernathy, T. Accadia, F. Acernese, C. Adams, R. Adhikari, C. Affeldt, B. Allen, G. S. Allen, E. Amador Ceron, D. Amariutei, R. S. Amin, S. B. Anderson, W. G. Anderson, F. Antonucci, K. Arai, M. A. Arain, M. C. Araya, S. M. Aston, P. Astone, D. Atkinson, P. Aufmuth, C. Aulbert, B. E. Aylott, S. Babak, P. Baker, G. Ballardin, S. Ballmer, Shaon Ghosh Aug 2011

Beating The Spin-Down Limit On Gravitational Wave Emission From The Vela Pulsar, J. Abadie, B. P. Abbott, R. Abbott, M. Abernathy, T. Accadia, F. Acernese, C. Adams, R. Adhikari, C. Affeldt, B. Allen, G. S. Allen, E. Amador Ceron, D. Amariutei, R. S. Amin, S. B. Anderson, W. G. Anderson, F. Antonucci, K. Arai, M. A. Arain, M. C. Araya, S. M. Aston, P. Astone, D. Atkinson, P. Aufmuth, C. Aulbert, B. E. Aylott, S. Babak, P. Baker, G. Ballardin, S. Ballmer, Shaon Ghosh

Department of Physics and Astronomy Faculty Scholarship and Creative Works

We present direct upper limits on continuous gravitational wave emission from the Vela pulsar using data from the Virgo detector's second science run. These upper limits have been obtained using three independent methods that assume the gravitational wave emission follows the radio timing. Two of the methods produce frequentist upper limits for an assumed known orientation of the star's spin axis and value of the wave polarization angle of, respectively, 1.9 × 10-24 and 2.2 × 10-24, with 95% confidence. The third method, under the same hypothesis, produces a Bayesian upper limit of 2.1 × 10-24, with 95% degree of …


Search For Gravitational Wave Bursts From Six Magnetars, J. Abadie, B. P. Abbott, R. Abbott, M. Abernathy, T. Accadia, F. Acernese, C. Adams, R. Adhikari, C. Affeldt, B. Allen, G. S. Allen, E. Amador Ceron, D. Amariutei, R. S. Amin, S. B. Anderson, W. G. Anderson, F. Antonucci, K. Arai, M. A. Arain, M. C. Araya, S. M. Aston, P. Astone, D. Atkinson, P. Aufmuth, C. Aulbert, B. E. Aylott, S. Babak, P. Baker, G. Ballardin, S. Ballmer, Shaon Ghosh Jun 2011

Search For Gravitational Wave Bursts From Six Magnetars, J. Abadie, B. P. Abbott, R. Abbott, M. Abernathy, T. Accadia, F. Acernese, C. Adams, R. Adhikari, C. Affeldt, B. Allen, G. S. Allen, E. Amador Ceron, D. Amariutei, R. S. Amin, S. B. Anderson, W. G. Anderson, F. Antonucci, K. Arai, M. A. Arain, M. C. Araya, S. M. Aston, P. Astone, D. Atkinson, P. Aufmuth, C. Aulbert, B. E. Aylott, S. Babak, P. Baker, G. Ballardin, S. Ballmer, Shaon Ghosh

Department of Physics and Astronomy Faculty Scholarship and Creative Works

Soft gamma repeaters (SGRs) and anomalous X-ray pulsars (AXPs) are thought to be magnetars: neutron stars powered by extreme magnetic fields. These rare objects are characterized by repeated and sometimes spectacular gamma-ray bursts. The burst mechanism might involve crustal fractures and excitation of non-radial modes which would emit gravitational waves (GWs). We present the results of a search for GW bursts from six galactic magnetars that is sensitive to neutron star f-modes, thought to be the most efficient GW emitting oscillatory modes in compact stars. One of them, SGR 0501+4516, is likely 1kpc from Earth, an order of magnitude closer …


Search For Gravitational Wave Bursts From Six Magnetars, J. Abadie, Marco Cavaglia, For Full List Of Authors, See Publisher's Website. Jun 2011

Search For Gravitational Wave Bursts From Six Magnetars, J. Abadie, Marco Cavaglia, For Full List Of Authors, See Publisher's Website.

Physics Faculty Research & Creative Works

Soft gamma repeaters (SGRs) and anomalous X-ray pulsars (AXPs) are thought to be magnetars: neutron stars powered by extreme magnetic fields. These rare objects are characterized by repeated and sometimes spectacular gamma-ray bursts. The burst mechanism might involve crustal fractures and excitation of non-radial modes which would emit gravitational waves (GWs). We present the results of a search for GW bursts from six galactic magnetars that is sensitive to neutron star f-modes, thought to be the most efficient GW emitting oscillatory modes in compact stars. One of them, SGR 0501+4516, is likely ∼1kpc from Earth, an order of magnitude …


Towards A Standardized Characteristic Extraction Tool, Maria Babiuc-Hamilton Apr 2011

Towards A Standardized Characteristic Extraction Tool, Maria Babiuc-Hamilton

Physics Faculty Research

Knowing the precise details of the gravitational wave signature obtained from numerical simulations of binary black hole mergers is a key requirement for meaningful detection and scientific interpretation of the data. However, the waveforms are not easy to be accurately computed. The importance of this problem to the future of gravitational wave astronomy is well recognized. Cauchy-Characteristic Extraction (CCE) is the most precise and refined extraction method available. The CCE technique connects the strong-field Cauchy evolution of the spacetime near the merger to the characteristic evolution to future null infinity where the waveform is extracted in an unambiguous way. Recently, …