Open Access. Powered by Scholars. Published by Universities.®

Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 12 of 12

Full-Text Articles in Physics

Power Scaling Feasibility Of Chromium-Doped Ii-Vi Laser Sources And The Demonstration Of A Chromium-Doped Zinc Selenide Face-Cooled Disk Laser, Jason B. Mckay Dec 2002

Power Scaling Feasibility Of Chromium-Doped Ii-Vi Laser Sources And The Demonstration Of A Chromium-Doped Zinc Selenide Face-Cooled Disk Laser, Jason B. Mckay

Theses and Dissertations

Tunable lasers in the 2-4 µm wavelength range are needed for Air Force sensor applications. Chromium-doped II-VI materials are a promising class of laser material for tunable operation in this wavelength range, but until recently had not produced enough output power to meet application requirements. This dissertation investigates Cr2+:II-VI material properties and potential laser designs, then experimentally demonstrates and analyzes the performance of a Cr2+:ZnSe disk laser design that can produce sufficient output power. Cr2+:II-VI laser materials are found to be susceptible to overheating and thermal lensing, but are otherwise satisfactory laser materials. The …


High Energy Laser Pointing Through Extended Turbulence, Jason A. Tellez Sep 2002

High Energy Laser Pointing Through Extended Turbulence, Jason A. Tellez

Theses and Dissertations

The airborne laser (ABL) uses adaptive optics to compensate the atmospheric turbulence between the ABL and the target. The primary purpose of this compensation is to increase the energy density of the energy laser at the target. However, the specifics of the engagement scenario require the tracking point of reference and the adaptive optics point of reference to be located at different points on the target. This research considers the effects of tracking a target in one direction while compensating for atmospheric turbulence in a different directions. The target references used are a point source and a rectangle, while a …


Adaptive Harmonic Balance Method For Unsteady, Nonlinear, One-Dimensional Periodic Flows, Raymond C. Maple Sep 2002

Adaptive Harmonic Balance Method For Unsteady, Nonlinear, One-Dimensional Periodic Flows, Raymond C. Maple

Theses and Dissertations

A new adaptive split-domain harmonic balance computational fluid dynamics (CFD) method is developed to solve highly nonlinear time-periodic flows such as those found in turbomachinery. The basic harmonic balance CFD method transforms an unsteady time-periodic problem into a steady-state problem by assuming a solution in the form of a Fourier series in time. The new method employs a unique multi-domain split-operator solution technique to remove a large-series stability restriction present in previous harmonic balance CFD approaches. In addition, the new method adapts the frequency content to the flow, starting with a small number of Fourier frequencies and augmenting the frequency …


Efficient And Accurate Computation Of Non-Negative Anisotropic Group Scattering Cross Sections For Discrete Ordinates And Monte Carlo Radiation Transport, David W. Gerts Jul 2002

Efficient And Accurate Computation Of Non-Negative Anisotropic Group Scattering Cross Sections For Discrete Ordinates And Monte Carlo Radiation Transport, David W. Gerts

Theses and Dissertations

A new method for approximating anisotropic, multi-group scatter cross sections for use in discretized and Monte Carlo multi-group neutron transport is presented. The new method eliminates unphysical artifacts such as negative group scatter cross sections and falsely positive cross sections. Additionally, when combined with the discrete elements angular quadrature method, the new cross sections eliminate the lack of angular support in the discrete ordinates quadrature method. The new method generates piecewise-average group-to-group scatter cross sections. The accuracy and efficiency for calculating the discrete elements cross sections has improved by many orders of magnitude compared to DelGrande and Mathews previous implementation. …


Collisional Dynamics Of Bi2 A(0U+). Ii. State-To-State Rotational Energy Transfer, Robert E. Franklin, Glen P. Perram Mar 2002

Collisional Dynamics Of Bi2 A(0U+). Ii. State-To-State Rotational Energy Transfer, Robert E. Franklin, Glen P. Perram

Faculty Publications

Rotational-to-translational (R–T) energy transfer within v′=1 of the A(0+u) state of Bi2 has been investigated using spectrally resolved, laser induced fluorescence techniques. Spectrally resolved emissions from collisionally populated rotational levels of Bi2(A,v′=1) were observed for helium, neon, and argon collision partners after laser excitation of the high rotational levels J′=171, 201, and 231. Total rotational removal rates from the initially prepared state range from 2.8–8.9×10−10 cm3/molecule s. Collisional population of rotational states with |ΔJ|⩽56 was observed at pressures of 0.09–1.4 Torr. The state-to-state rates are adequately modeled by the energy based statistical power gap …


Distributed Beacon Requirements For Branch Point Tolerant Laser Beam Compensation In Extended Atmospheric Turbulence, Virgil E. Zetterlind Iii Mar 2002

Distributed Beacon Requirements For Branch Point Tolerant Laser Beam Compensation In Extended Atmospheric Turbulence, Virgil E. Zetterlind Iii

Theses and Dissertations

Branch point tolerant phase reconstructors can vastly improve adaptive optic system performance in extended atmospheric turbulence. This thesis explores the performance bounds of two such reconstructors Goldstein's algorithm and hidden phase. A least squares reconstructor is implemented for comparison. System performance is presented for various scenarios, including correction time-delays, wave-front sensor noise, and extended beacons. These scenarios are of interest for laser communication and directed energy systems such as Airborne Laser. Performance bounds are obtained through wave-optics simulation. The extended beacon propagation geometry approximates the USAF AFRL-DE North Oscura Peak range. Results show that branch point tolerant reconstructors outperform least …


Smart Structures For Control Of Optical Surfaces, D. Michael Sobers Jr. Mar 2002

Smart Structures For Control Of Optical Surfaces, D. Michael Sobers Jr.

Theses and Dissertations

The development of lightweight, large-aperture optics is of vital importance to the Department of Defense and the US Air Force for advancing remote sensing applications and improving current capabilities. Synthetic polymer optics offer weight and flexibility advantages over current generation glass mirrors, but require active control to maintain tight surface figure tolerances. This research explores the feasibility of using imbedded piezoelectric materials to control optical surfaces. Membrane-based and stiff piezo-controlled mirrors were constructed to develop and validate control techniques. Test results verified that surface control on the order of tens of wavelengths is possible using these systems.


Carrier Dynamics In Mid-Infrared Quantum Well Lasers Using Time-Resolved Photoluminescence, Steven M. Gorski Mar 2002

Carrier Dynamics In Mid-Infrared Quantum Well Lasers Using Time-Resolved Photoluminescence, Steven M. Gorski

Theses and Dissertations

Research in mid-infrared laser technology has uncovered numerous applications for commercial and government use. A limiting factor for mid-infrared semiconductors is nonradiative recombination, which is a process that produces excess heat without emitting a photon. Nonradiative recombination mechanisms occur over a short time period and difficult to measure. Growth methods have significantly reduced the nonradiative recombination in some materials. The objective of this research is to further the understanding of how quantum well structures impact carrier recombination. InAsSb/InAlASb and InAs/GaInSb quantum well structures were studied with time-resolved photoluminescence utilizing upconversion, a non-linear wave mixing technique. This research reports Shockley-Read-Hall, radiative, …


Fabrication And Cold-Flow Testing Of Subscale Space-Based Laser Geometry, Scott E. Bergren Mar 2002

Fabrication And Cold-Flow Testing Of Subscale Space-Based Laser Geometry, Scott E. Bergren

Theses and Dissertations

The objectives of this research were to build a facility that could simulate the expected fluid flow properties in the conceptual Space Based Laser Integrated Flight Experiment (SBL IFX) gas dynamic laser using cold-flow, and to investigate the performance of the model. A 1/5th scale model was fabricated and mated to a blow-down/vacuum wind tunnel. Using rapid data acquisition and schlieren photography the diffuser was determined to initially produce similar fluid flow to the SBL IFX, but rapidly became subsonic due to a transient normal shock wave formed when the wind tunnel was started.


Computational Aerodynamic Analysis Of The Flow Field About A Hypervelocity Test Sled, Andrew J. Lofthouse Mar 2002

Computational Aerodynamic Analysis Of The Flow Field About A Hypervelocity Test Sled, Andrew J. Lofthouse

Theses and Dissertations

The flow field about the nose section of a hypervelocity test sled is computed using computational fluid dynamics. The numerical model of the test sled corresponds to the Nike O/U narrow gage sled used in the upgrade program at the High Speed Test Track facility, Holloman Air Force Base, New Mexico. The high temperatures and pressures resulting from the aerodynamic heating and loading affect the sled structure and the performance of the vehicle. The sled transitions from an air environment to a helium environment at a speed of approximately 3,300 feet per second (Mach 3 in air, Mach 1.02 in …


Fabrication Techniques For Micro-Optical Device Arrays, Ryan D. Conk Mar 2002

Fabrication Techniques For Micro-Optical Device Arrays, Ryan D. Conk

Theses and Dissertations

Micro-optical devices are vital components of conventional military data storage, sensor, and communication systems. Two types of micro-optical device arrays exist: individually addressable and matrix addressable. The matrix addressable array has a drastically reduced number of metal lines and can potentially be fabricated into large, dense (over 1k elements) arrays. Such arrays are expected to enable the development of extremely high bandwidth optical interconnect systems for future military applications including optical computing and short-haul fiber optical communication systems. I investigate new fabrication techniques for the assembly of dense matrix-addressed arrays of micro-optical devices such as vertical-cavity surface-emitting lasers. Using a …


Development Of A Tm:Ho:Ylf-Laser-Pumped Orientation-Patterned Gallium Arsenide Optical Parametric Oscillator, Michael D. Harm Mar 2002

Development Of A Tm:Ho:Ylf-Laser-Pumped Orientation-Patterned Gallium Arsenide Optical Parametric Oscillator, Michael D. Harm

Theses and Dissertations

Coherent optical sources in the mid-infrared region (mid-IR) are important fundamental tools for infrared countermeasures and battlefield remote sensing. Nonlinear optical effects can be applied to convert existing near-IR laser sources to radiate in the mid-IR. This research focused on achieving such a conversion with a quasi-phase matched optical parametric oscillators using orientation-patterned gallium arsenide (OPGaAs), a material that can be quasi-phased matched by periodically reversing the crystal structure during the epitaxial growth process. Although non-linear optical conversion was not ultimately achieved during this research, many valuable lessons were learned from working with this material. This thesis reviews the theory …