Open Access. Powered by Scholars. Published by Universities.®

Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 7 of 7

Full-Text Articles in Physics

Nonlinear Dynamics Of Mode-Locking Optical Fiber Ring Lasers, Kristin M. Spaulding, Darryl H. Yong, Arnold D. Kim, J Nathan Kutz May 2002

Nonlinear Dynamics Of Mode-Locking Optical Fiber Ring Lasers, Kristin M. Spaulding, Darryl H. Yong, Arnold D. Kim, J Nathan Kutz

All HMC Faculty Publications and Research

We consider a model of a mode-locked fiber ring laser for which the evolution of a propagating pulse in a birefringent optical fiber is periodically perturbed by rotation of the polarization state owing to the presence of a passive polarizer. The stable modes of operation of this laser that correspond to pulse trains with uniform amplitudes are fully classified. Four parameters, i.e., polarization, phase, amplitude, and chirp, are essential for an understanding of the resultant pulse-train uniformity. A reduced set of four coupled nonlinear differential equations that describe the leading-order pulse dynamics is found by use of the variational nature …


Laplace Transform Of Spherical Bessel Functions, Andrei Ludu Jan 2002

Laplace Transform Of Spherical Bessel Functions, Andrei Ludu

Andrei Ludu

No abstract provided.


Low-Cost Manufacturing Process For Nanostructured Metals And Alloys, Travis L. Brown, Srinivasan Swaminathan, Srinivasan Chandrasekar, W. Dale Compton, Alexander H. King, Kevin P. Trumble Jan 2002

Low-Cost Manufacturing Process For Nanostructured Metals And Alloys, Travis L. Brown, Srinivasan Swaminathan, Srinivasan Chandrasekar, W. Dale Compton, Alexander H. King, Kevin P. Trumble

Alexander H. King

In spite of their interesting properties, nanostructured materials have found limited uses because of the cost of preparation and the limited range of materials that can be synthesized. It has been shown that most of these limitations can be overcome by subjecting a material to large-scale deformation, as occurs during common machining operations. The chips produced during lathe machining of a variety of pure metals, steels, and other alloys are shown to be nanostructured with grain (crystal) sizes between 100 and 800 nm. The hardness of the chips is found to be significantly greater than that of the bulk material.


Single-Particle Model For A Granular Ratchet, Albert J. Bae, Welles Antonio Martinez Morgado, J. J. P. Veerman, Giovani L. Vasconcelos Jan 2002

Single-Particle Model For A Granular Ratchet, Albert J. Bae, Welles Antonio Martinez Morgado, J. J. P. Veerman, Giovani L. Vasconcelos

Mathematics and Statistics Faculty Publications and Presentations

A simple model for a granular ratchet corresponding to a single grain bouncing off a vertically vibrating sawtooth-shaped base is studied. Depending on the model parameters, horizontal transport is observed in both the preferred and unfavoured directions. A phase diagram is presented indicating the regions in parameter space where the different regimes (no current, normal current, and current reversal) occur.


Flow Patterns In A Two-Roll Mill, Christopher Hills Jan 2002

Flow Patterns In A Two-Roll Mill, Christopher Hills

Articles

The two-dimensional flow of a Newtonian fluid in a rectangular box that contains two disjoint, independently-rotating, circular boundaries is studied. The flow field for this two-roll mill is determined numerically using a finite-difference scheme over a Cartesian grid with variable horizontal and vertical spacing to accommodate satisfactorily the circular boundaries. To make the streamfunction numerically determinate we insist that the pressure field is everywhere single-valued. The physical character, streamline topology and transitions of the flow are discussed for a range of geometries, rotation rates and Reynolds numbers in the underlying seven-parameter space. An account of a preliminary experimental study of …


Advances In Space Radiation Shielding Codes, John W. Wilson, Ram K. Tripathi, Garry D. Qualls, Francis A. Cucinotta, Richard E. Prael, John W. Norbury, John H. Heinbockel, John Tweed, Giovanni De Angelis Jan 2002

Advances In Space Radiation Shielding Codes, John W. Wilson, Ram K. Tripathi, Garry D. Qualls, Francis A. Cucinotta, Richard E. Prael, John W. Norbury, John H. Heinbockel, John Tweed, Giovanni De Angelis

Mathematics & Statistics Faculty Publications

Early space radiation shield code development relied on Monte Carlo methods and made important contributions to the space program. Monte Carlo methods have resorted to restricted one-dimensional problems leading to imperfect representation of appropriate boundary conditions. Even so, intensive computational requirements resulted and shield evaluation was made near the end of the design process. Resolving shielding issues usually had a negative impact on the design. Improved spacecraft shield design requires early entry of radiation constraints into the design process to maximize performance and minimize costs. As a result, we have been investigating high-speed computational procedures to allow shield analysis from …


Analysis And Classification Of Nonlinear Dispersive Evolution Equations In The Potential Representation, Andrei Ludu Dec 2001

Analysis And Classification Of Nonlinear Dispersive Evolution Equations In The Potential Representation, Andrei Ludu

Andrei Ludu

No abstract provided.