Open Access. Powered by Scholars. Published by Universities.®

Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 3 of 3

Full-Text Articles in Physics

Heterotic Conformal Field Theory And Gepner’S Construction, Darwin Chang, Asim Gangopadhyaya, Alok Kumar, Jin Wang Oct 1990

Heterotic Conformal Field Theory And Gepner’S Construction, Darwin Chang, Asim Gangopadhyaya, Alok Kumar, Jin Wang

Physics: Faculty Publications and Other Works

We discuss some general properties of heterotic conformal field theory in which conformal anomalies c are different for the left-moving and right-moving sectors. It is precisely this type of theory that can be applied immediately to the construction of heterotic string theory. We discuss a general way of constructing such a theory using free fermions. The construction is then applied to generalize Gepner's construction of superstring solutions using the tensor products of N=2 superconformal field theories.


Effects Of Quantum Noise On A Two-Level System In A Single-Mode Cavity, Linda L. Vahala Aug 1990

Effects Of Quantum Noise On A Two-Level System In A Single-Mode Cavity, Linda L. Vahala

Electrical & Computer Engineering Faculty Publications

The effects of quantum noise on a two-level system in the bad-cavity regime are considered perturbatively in the form of closure at the pair-correlation level. It is found that pair-correlation effects can reduce the level of semiclassical chaos. However, under the rotating-wave approximation (RWA), quantum noise can lead to chaos if there is an initial population inversion, while the full RWA Hamiltonian system remains integrable.


Path Integral Study Of The Correlated Electronic States Of Na4–Na6, Randall W. Hall Jan 1990

Path Integral Study Of The Correlated Electronic States Of Na4–Na6, Randall W. Hall

Collected Faculty and Staff Scholarship

Feynman’s path integral formulation of quantum mechanics is used to study the correlated electronic states of Na4–Na6. Two types of simulations are performed: in the first, the nuclei are allowed to move at finite temperature in order to find the most stable geometries. In agreement with previous calculations, we find that planar structures are the most stable and that there is significant vibrational amplitude at finite temperatures, indicating that the Born–Oppenheimer surface is relatively flat. In the second type of simulation, the nuclei are held fixed at symmetric and asymmetric geometries and the correlated electron density is found. Our results …