Open Access. Powered by Scholars. Published by Universities.®

Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 5 of 5

Full-Text Articles in Physics

Argon-Photoion–Auger-Electron Coincidence Measurements Following K-Shell Excitation By Synchrotron Radiation, Jon C. Levin, C. Biedermann, N. Keller, L. Liljeby, C.-S. O, R. T. Short, Ivan A. Sellin, Dennis W. Lindle Aug 1990

Argon-Photoion–Auger-Electron Coincidence Measurements Following K-Shell Excitation By Synchrotron Radiation, Jon C. Levin, C. Biedermann, N. Keller, L. Liljeby, C.-S. O, R. T. Short, Ivan A. Sellin, Dennis W. Lindle

Chemistry and Biochemistry Faculty Research

Argon photoion spectra have been obtained for the first time in coincidence with K-LL and K-LM Auger electrons, as a function of photon energy. The simplified charge distributions which result exhibit a much more pronounced photon-energy dependence than do the more complicated noncoincident spectra. In the near-K-threshold region, Rydberg shakeoff of np levels, populated by resonant excitation of K electrons, occurs with significant probability, as do double-Auger processes and recapture of the K photoelectron through postcollision interaction.


32nd Rocky Mountain Conference Jul 1990

32nd Rocky Mountain Conference

Rocky Mountain Conference on Magnetic Resonance

Program and registration information for the 32nd annual meeting of the Rocky Mountain Conference, co-sponsored by the Rocky Mountain Section of the Society for Applied Spectroscopy and the Rocky Mountain Chromatography Discussion Group. Held in Denver, Colorado, July 29 - August 3, 1990.


Path Integral Study Of The Correlated Electronic States Of Na4–Na6, Randall W. Hall Jan 1990

Path Integral Study Of The Correlated Electronic States Of Na4–Na6, Randall W. Hall

Collected Faculty and Staff Scholarship

Feynman’s path integral formulation of quantum mechanics is used to study the correlated electronic states of Na4–Na6. Two types of simulations are performed: in the first, the nuclei are allowed to move at finite temperature in order to find the most stable geometries. In agreement with previous calculations, we find that planar structures are the most stable and that there is significant vibrational amplitude at finite temperatures, indicating that the Born–Oppenheimer surface is relatively flat. In the second type of simulation, the nuclei are held fixed at symmetric and asymmetric geometries and the correlated electron density is found. Our results …


Coincidence Orientations Of Crystals In Tetragonal Systems, With Applications To Yba2cu3o7, Abha Singh, N. Chandrasekhar, Alexander H. King Jan 1990

Coincidence Orientations Of Crystals In Tetragonal Systems, With Applications To Yba2cu3o7, Abha Singh, N. Chandrasekhar, Alexander H. King

Alexander H. King

We have developed a method for the characterization of coincidence-site lattices (CSL's) in tetragonal or near-tetragonal orthorhombic structures, by suitable modifications to the method of Grimmer & Warrington [Acta Cryst. (1987), A43, 232-243]. We have applied our method to determine coincidence rotations and the associated information appropriate for forming constrained CSL's in the high-To superconductor YBazCu307-n. The unit cell is orthorhombic with lattice parameters a = 3.82, b = 3"89 and c = 11.67 A for the nominal composition. We present tables of coincidence rotation angles, .Z, CSL, DSCL and associated step vectors up to ,~ = 50. We find …


A Study Of The Hydration Properties Of Selected Laser Dye Aerosols Including Continuous-Flow Parallel Plate And Alternating-Gradient Thermal Diffusion Cloud Chamber Measurements In The High Supersaturation Regime, Donald E. Hagen, Max B. Trueblood, Darryl J. Alofs Jan 1990

A Study Of The Hydration Properties Of Selected Laser Dye Aerosols Including Continuous-Flow Parallel Plate And Alternating-Gradient Thermal Diffusion Cloud Chamber Measurements In The High Supersaturation Regime, Donald E. Hagen, Max B. Trueblood, Darryl J. Alofs

Mechanical and Aerospace Engineering Faculty Research & Creative Works

The Hydration Behavior of Aerosols made Up of Various Fluorescent Dyes when Exposed to Water Saturation or Supersaturated Conditions Has Been Studied. Critical Supersaturation Spectra Are Reported. the Dyes Are Found to Behave as High Molecular Weight Ionic Compounds that Obey Kohler Theory. their Relevant Kohler Parameters Are Measured. This Study Makes Use of and Compares Results from the Isothermal Hazecontinuous-Flowand Alternating-Gradient Thermal Diffusion Cloud Chambers. the Ability of the Continuous-Flow Thermal Diffusion Chamber to Operate Correctly at High Supersaturations is Shown. © 1990 Elsevier Science Publishing Co., Inc.