Open Access. Powered by Scholars. Published by Universities.®

Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

PDF

Theses/Dissertations

Thin films

Discipline
Institution
Publication Year
Publication

Articles 1 - 30 of 35

Full-Text Articles in Physics

Measurements Of Magnetic Field Penetration Of Materials For Superconducting Radiofrequency Cavities, Iresha Harshani Senevirathne May 2023

Measurements Of Magnetic Field Penetration Of Materials For Superconducting Radiofrequency Cavities, Iresha Harshani Senevirathne

Physics Theses & Dissertations

Superconducting Radio Frequency (SRF) cavities used in particle accelerators are typically formed from or coated with superconducting materials. Currently high purity niobium is the material of choice for SRF cavities which have been optimized to operate near their theoretical field limits. This brings about the need for significant R&D efforts to develop next generation superconducting materials which could outperform Nb and keep up with the demands of new accelerator facilities. To achieve high quality factors and accelerating gradients, the cavity material should be able to remain in the superconducting Meissner state under high RF magnetic field without penetration of quantized …


Novel As-S-Se Compositions Of Solution-Processed Chalcogenide Thin Films For Infrared Optics, Annabella Orsini Apr 2023

Novel As-S-Se Compositions Of Solution-Processed Chalcogenide Thin Films For Infrared Optics, Annabella Orsini

Physics and Astronomy Honors Papers

Chalcogenide glasses (ChGs) have a wide range of interdisciplinary applications. In industry, ChGs are used to vastly improve infrared sight abilities. There are, however, improvements that can be made to the films’ stability, cost, and flexibility. Our project seeks to produce thin films that have these improvements, with capabilities comparable or better than what is widely used in the field. Thin films created through solution-based processes have proven to be much more flexible in comparison to bulk glass versions. Other elements in Group 16, such as Sulfur and Selenium have shown across literature to be a cost-effective alternative to Tellurium …


Magnetic Properties Of Lsmo/Sto Thin Films: Magnetocaloric, Spin Dynamics And Magnetic Viscosity Investigations, Navid Mottaghi Jan 2021

Magnetic Properties Of Lsmo/Sto Thin Films: Magnetocaloric, Spin Dynamics And Magnetic Viscosity Investigations, Navid Mottaghi

Graduate Theses, Dissertations, and Problem Reports

While other films are discussed, this dissertation will focus on detailed studies of the dc and ac bulk magnetometry in a characteristic 7.6 nm thin film of La0.7Sr0.3MnO3 grown on SrTiO3 (001). The dc bulk magnetometry measurements show that the sample is magnetically inhomogeneous. Temperature variation of magnetization (M vs. T) was measured in zero-field-cooled and field-cooled protocols to determine the blocking temperature TB in different applied magnetic fields. The field variation of TB is interpreted as the presence of embedded spin clusters of 1.4 nm. Moreover, the M vs. …


Heterostructure Of 2d Materials: Hfs2/Hfo2/Si, Christopher J. Robledo Aug 2020

Heterostructure Of 2d Materials: Hfs2/Hfo2/Si, Christopher J. Robledo

MSU Graduate Theses

Heterostructures have been utilized in electronic devices for over 50 years with the proposal for the first heterostructure transistor in 1957. With the scaling of devices, it is necessary to create new heterostructures that will comply with Moore’s Law, as well as make devices faster and consume less power. Novel 2D materials, such as hafnium disulfide, have shown promise as an active channel layer, while hafnium dioxide is already proven to be a replacement of silicon dioxide for the gate insulating layer. However, fabrication techniques for wide-scale integration of these heterostructures have not yet been achieved. Also, the dielectric properties …


Investigation Of Mnxni1-Xo Thin Films Using Pulsed Laser Deposition, Md Ashif Anwar May 2020

Investigation Of Mnxni1-Xo Thin Films Using Pulsed Laser Deposition, Md Ashif Anwar

MSU Graduate Theses

The exchange bias (EB) effect, especially in nanomaterials, is highly promising for use in antiferromagnet-based spintronics applications. NiO is a well known antiferromagnetic material with a high Néel temperature (525K) and can exhibit ferromagnetism/ ferrimagnetism by adding other magnetic transition elements. Our previous work has shown that the antiferromagnetic characteristics of conventional NiO insulating nanostructured material can be altered to have substantial ferrimagnetic characteristics by doping NiO with Mn or Co. Pulsed laser deposition (PLD) was used to grow heterostructures comprised of a nanostructured thin NiO film deposited on the surface of a MgO (100) and Al2O3 …


Heat, Charge And Spin Transport Of Thin Film Nanostructures, Devin John Wesenberg Jan 2018

Heat, Charge And Spin Transport Of Thin Film Nanostructures, Devin John Wesenberg

Electronic Theses and Dissertations

Understanding of fundamental physics of transport properties in thin film nanostructures is crucial for application in spintronic, spin caloritronics and thermoelectric applications. Much of the difficulty in the understanding stems from the measurement itself. In this dissertation I present our thermal isolation platform that is primarily used for detection of thermally induced effects in a wide variety of materials. We can accurately and precisely produce in-plane thermal gradients in these membranes, allowing for thin film measurements on 2-D structures. First, we look at thermoelectric enhancements of doped semiconducting single-walled carbon nanotube thin films. We use the Wiedemann-Franz law to calculate …


Effects Of Interface Scattering And Carrier Localization On Conductance Of Cu-Based Superlattices, Jiyoon Jessica Kim Jan 2018

Effects Of Interface Scattering And Carrier Localization On Conductance Of Cu-Based Superlattices, Jiyoon Jessica Kim

Legacy Theses & Dissertations (2009 - 2024)

Ultra-thin films and multilayer structures are widely used in modern technologies such as semiconductor logic and memory devices. As film thickness decreases to a few nanometers or smaller, classical transport theories are no longer valid. In this study, we investigate transport properties of superlattices with layer thickness reduced to ~1 nm. The superlattices are made of alternating layers of Cu and a transition metal (Ru, Mo, and Co). The layers are deposited by physical vapor deposition and resistance changes during superlattice growth are measured. The observed resistance evolution reveals the effects of carrier scattering and localization at the interfaces.


Carrier Scattering And Localization In Nm-Thick Al/Ru, Al/Co And Al/Mo Superlattices, Yanli Zhang Jan 2018

Carrier Scattering And Localization In Nm-Thick Al/Ru, Al/Co And Al/Mo Superlattices, Yanli Zhang

Legacy Theses & Dissertations (2009 - 2024)

Thin films and superlattices are widely used in modern technologies. Certain metal superlattices with layer thickness between 1 to 10 nm have interesting magneto transport properties and unique applications in spintronics and data storage. We have studied electrical conductance of Al/Ru, Al/Co, and Al/Mo superlattices with layer thickness between 1 to 2 nm. By monitoring the resistance change during the growth of the superlattice, we are able to observe directly the effects of carrier localization and scattering when a highly disordered interface is being deposited.


Synthesis And Characterization Of The 2-Dimensional Transition Metal Dichalcogenides, Robert Browning Mar 2017

Synthesis And Characterization Of The 2-Dimensional Transition Metal Dichalcogenides, Robert Browning

Dissertations and Theses

In the last 50 years, the semiconductor industry has been scaling the silicon transistor to achieve faster devices, lower power consumption, and improve device performance. Transistor gate dimensions have become so small that short channel effects and gate leakage have become a significant problem. To address these issues, performance enhancement techniques such as strained silicon are used to improve mobility, while new high-k gate dielectric materials replace silicon oxide to reduce gate leakage. At some point the fundamental limit of silicon will be reached and the semiconductor industry will need to find an alternate solution. The advent of graphene led …


Engineering The Ground State Of Complex Oxides, Derek Joseph Meyers Jul 2015

Engineering The Ground State Of Complex Oxides, Derek Joseph Meyers

Graduate Theses and Dissertations

Transition metal oxides featuring strong electron-electron interactions have been at the forefront of condensed matter physics research in the past few decades due to the myriad of novel and exciting phases derived from their competing interactions. Beyond their numerous intriguing properties displayed in the bulk they have also shown to be quite susceptible to externally applied perturbation in various forms. The dominant theme of this work is the exploration of three emerging methods for engineering the ground states of these materials to access both their applicability and their deficiencies.

The first of the three methods involves a relatively new set …


Strain Relaxation In Nm-Thick Cu And Cu-Alloy Films Bonded To A Rigid Substrate, Ashley Herrmann Jan 2015

Strain Relaxation In Nm-Thick Cu And Cu-Alloy Films Bonded To A Rigid Substrate, Ashley Herrmann

Legacy Theses & Dissertations (2009 - 2024)

In the wide scope of modern technology, nm-thick metallic films are increasingly used as lubrication layers, optical coatings, plating seeds, diffusion barriers, adhesion layers, metal contacts, reaction catalyzers, etc. A prominent example is the use of nm-thick Cu films as electroplating seed layers in the manufacturing of integrated circuits (ICs). These high density circuits are linked by on-chip copper interconnects, which are manufactured by filling Cu into narrow trenches by electroplating. The Cu fill by electroplating requires a thin Cu seed deposited onto high-aspect-ratio trenches. In modern ICs, these trenches are approaching 10 nm or less in width, and the …


Nanoscale Thermoelectrics: A Study Of The Absolute Seebeck Coefficient Of Thin Films, Sarah J. Mason Jan 2014

Nanoscale Thermoelectrics: A Study Of The Absolute Seebeck Coefficient Of Thin Films, Sarah J. Mason

Electronic Theses and Dissertations

The worlds demand for energy is ever increasing. Likewise, the environmental impact of climate change due generating that energy through combustion of fossil fuels is increasingly alarming. Due to these factors new sources of renewable energies are constantly being sought out. Thermoelectric devices have the ability to generate clean, renewable, energy out of waste heat. However promising that is, their inefficiency severely inhibits applicability and practical use. The usefulness of a thermoelectric material increases with the dimensionless quantity, ZT, where, Z = S2σ/κ, and S, σ, and κ are the Seebeck coefficient and electrical and thermal …


The Impact Of Growth Conditions On Cubic Znmgo Ultraviolet Sensors, Ryan Boutwell Jan 2013

The Impact Of Growth Conditions On Cubic Znmgo Ultraviolet Sensors, Ryan Boutwell

Electronic Theses and Dissertations

Cubic Zn1-xMgxO (c-Zn1-xMgxO) thin films have opened the deep ultraviolet (DUV) spectrum to exploration by oxide optoelectronic devices. These extraordinary films are readily wet-etch-able, have inversion symmetric lattices, and are made of common and safe constituents. They also host a number of new exciting experimental and theoretical challenges. Here, the relation between growth conditions of the c-Zn1-xMgxO film and performance of fabricated ultraviolet (UV) sensors is investigated. Plasma-Enhanced Molecular Beam Epitaxy was used to grow Zn1-xMgxO thin films and formation conditions were explored by varying the growth temperature, Mg source flux, oxygen flow rate, and radio-frequency (RF) power coupled into …


Structural, Optical And Electrical Properties Of Yttrium-Doped Hafnium Oxide Nanocrystalline Thin Films, Abhilash Kongu Jan 2013

Structural, Optical And Electrical Properties Of Yttrium-Doped Hafnium Oxide Nanocrystalline Thin Films, Abhilash Kongu

Open Access Theses & Dissertations

Hafnium oxide (HfO2) has emerged as the most promising high-k dielectric for Metal-Oxide-Semiconductor (MOS) devices and has been highlighted as the most suitable dielectric materials to replace silicon oxide because of its comprehensive performance. In the present research, yttrium-doped HfO2 (YDH) thin films were fabricated using RF magnetron sputter deposition onto Si (100) and quartz with a variable thickness. Cross-sectional scanning electron microscopy coupled with Filmetrics revealed that film thickness values range from 700 A° to 7500 A°. Electrical properties such as AC Resistivity and current-voltage (I-V) characteristics of YDH films were studied. YDH films that were relatively thin (<1500 A°) crystallized in monoclinic phase while thicker films crystallized in cubic phase. The band gap (Eg) of the films was calculated from the optical measurements. The band gap was found to be ∼5.60 eV for monoclinic while it is ∼6.05 eV for cubic phase of YDH films. Frequency dependence of the electrical resistivity (ρac) and the total conductivity of the films were measured. Resistivity decreased (by three orders of magnitude) with increasing frequency from 100 Hz to 1 MHz, attributed due to the hopping mechanism in YDH films. Whereas, while ρac∼1Ω-m at low frequencies (100 Hz), it decreased to ∼ 104 Ω-cm at higher frequencies (1 MHz). Aluminum (Al) metal electrodes were deposited to fabricate a thin film capacitor with YDH layer as dielectric film thereby employing Al-YDH-Si capacitor structure. The results indicate that the capacitance of the films decrease with increasing film thickness. A detailed analysis of the electrical characteristics of YDH films is presented.


Ruco To Extend The Scalability Of Ultra-Thin Direct Plate Liners, Daniel Verne Greenslit Jan 2013

Ruco To Extend The Scalability Of Ultra-Thin Direct Plate Liners, Daniel Verne Greenslit

Legacy Theses & Dissertations (2009 - 2024)

In traditional semiconductor technology a sputtered copper seed layer is used to improve the adhesion, microstucture, and electromigration characteristics of electrochemically deposited (ECD) copper. The seed layer is deposited on top of a Ta/TaN stack. The Ta layer acts as an adhesion and nucleation layer for the copper seed and the TaN serves as a diffusion barrier for the Cu. As the line widths continue to shrink, scaling each of these layers becomes more difficult. It would be advantageous for the interconnect to be composed of as much copper as possible, transitioning from the traditional liner seed stack to a …


Investigation Of Nbnx Thin Films And Nanoparticles Grown By Pulsed Laser Deposition And Thermal Diffusion, Ashraf Hassan Farha Jan 2013

Investigation Of Nbnx Thin Films And Nanoparticles Grown By Pulsed Laser Deposition And Thermal Diffusion, Ashraf Hassan Farha

Electrical & Computer Engineering Theses & Dissertations

Niobium nitride films (NbNx) were grown on Nb and Si (100) substrates using pulsed laser deposition (PLD), laser heating, and thermal diffusion methods. Niobium nitride films were deposited on Nb substrates using PLD with a Q-switched Nd: YAG laser (λ = 1064 nm, 40 ns pulse width, and 10 Hz repetition rate) at different laser fluences, different nitrogen background pressures and deposition temperatures. The effect of changing PLD parameters for films done by PLD was studied. The seen observations establish guidelines for adjusting the laser parameters to achieve the desired morphology and phase of the grown NbNx films.

When the …


Thin Films Of Carbon Nanotubes And Nanotube/Polymer Composites, Anthony D. Willey Dec 2012

Thin Films Of Carbon Nanotubes And Nanotube/Polymer Composites, Anthony D. Willey

Theses and Dissertations

A method is described for ultrasonically spraying thin films of carbon nanotubes that have been suspended in organic solvents. Nanotubes were sonicated in N-Methyl-2-pyrrolidone or N-Cyclohexyl-2-pyrrolidone and then sprayed onto a heated substrate using an ultrasonic spray nozzle. The solvent quickly evaporated, leaving a thin film of randomly oriented nanotubes. Film thickness was controlled by the spray time and ranged between 200-500 nm, with RMS roughness of about 40 nm. Also described is a method for creating thin (300 nm) conductive freestanding nanotube/polymer composite films by infiltrating sprayed nanotube films with polyimide.


Plasmonic And Photonic Designs For Light Trapping In Thin Film Solar Cells, Liming Ji Dec 2012

Plasmonic And Photonic Designs For Light Trapping In Thin Film Solar Cells, Liming Ji

Graduate Theses and Dissertations

Thin film solar cells are promising to realize cheap solar energy. Compared to conventional wafer cells, they can reduce the use of semiconductor material by 90%. The efficiency of thin film solar cells, however, is limited due to insufficient light absorption. Sufficient light absorption at the bandgap of semiconductor requires a light path more than 10x the thickness of the semiconductor. Advanced designs for light trapping are necessary for solar cells to absorb sufficient light within a limited volume of semiconductor. The goal is to convert the incident light into a trapped mode in the semiconductor layer.

In this dissertation, …


Pulse Sharpening Effects Of Thin Film Ferroelectric Transmission Lines, Robert J. Sleezer Dec 2012

Pulse Sharpening Effects Of Thin Film Ferroelectric Transmission Lines, Robert J. Sleezer

Graduate Theses and Dissertations

Advances in material science have resulted in the development of electrically nonlinear high dielectric thin film ferroelectrics, which have led to new opportunities for the creation of novel devices. This dissertation investigated one such device: a low voltage nonlinear transmission line (NLTL). A finite element simulation of ferroelectric transmission lines showed that NLTLs are capable of creating shockwaves. Additionally, if the losses are kept sufficiently low, it was shown that voltage gain should be possible. Furthermore, a method of accounting for material dispersion was developed. Results from simulations including material dispersion showed that temporal solitons might be possible from a …


Electron Microscopy Characterization Of Vanadium Dioxide Thin Films And Nanoparticles, Felipe Rivera Mar 2012

Electron Microscopy Characterization Of Vanadium Dioxide Thin Films And Nanoparticles, Felipe Rivera

Theses and Dissertations

Vanadium dioxide (VO_2) is a material of particular interest due to its exhibited metal to insulator phase transition at 68°C that is accompanied by an abrupt and significant change in its electronic and optical properties. Since this material can exhibit a reversible drop in resistivity of up to five orders of magnitude and a reversible drop in infrared optical transmission of up to 80%, this material holds promise in several technological applications. Solid phase crystallization of VO_2 thin films was obtained by a post-deposition annealing process of a VO_{x,x approx 2} amorphous film sputtered on an amorphous silicon dioxide (SiO_2) …


A Study Of Wo3 And W0.95ti0.05o3 Thin Films Using Comparative Spectroscopy, James Heyward Howard Jan 2012

A Study Of Wo3 And W0.95ti0.05o3 Thin Films Using Comparative Spectroscopy, James Heyward Howard

Open Access Theses & Dissertations

Tungsten oxide (WO3) is important and well-studied in materials science, particularly for sensor applications. In this research work, we consider the innovation of adding Ti to thin films of this material. Since the characteristics of any such material are strongly dependent on the conditions and methods used in its deposition, the main objective of this project is to provide a detailed spectroscopic characterization by Raman scattering, infrared absorption, and X-ray photoelectron spectroscopy (XPS) of WO3 and of W0.95Ti0.05O3. This characterization will be based on comparison of the morphology and composition of WO3-based thin films, grown by radio frequency magnetron reactive …


Metal Blacks As Scattering Centers To Increase The Efficiency Of Thin Film Solar Cells, Deep R. Panjwani Jan 2011

Metal Blacks As Scattering Centers To Increase The Efficiency Of Thin Film Solar Cells, Deep R. Panjwani

Electronic Theses and Dissertations

Metal nano particles are investigated as scattering centers on front surface of thin-film solar cells to improve efficiency. The principle is that scattering, which is enhanced near the plasmon resonance frequency of the particle and depends on particle size, increases the effective optical path length of incident light, leading to more light absorption in active layer of thin film solar cell. The particular types of particles investigated here are known as "metal-black", well known as an IR absorber for bolometric infrared detectors. Gold-black was deposited on commercial thin-film solar cells using a thermal evaporator in a nitrogen ambient at pressures …


Nucleation, Wetting And Agglomeration Of Copper And Copper-Alloy Thin Films On Metal Liner Surfaces, Stephanie Florence Labarbera Jan 2011

Nucleation, Wetting And Agglomeration Of Copper And Copper-Alloy Thin Films On Metal Liner Surfaces, Stephanie Florence Labarbera

Legacy Theses & Dissertations (2009 - 2024)

One of the key challenges in fabricating narrower and higher aspect ratio interconnects using damascene technology has been achieving an ultra-thin (~2 nm) and continuous Cu seed coverage on trench sidewalls. The thin seed is prone to agglomeration because of poor Cu wetting on the Ta liner. Using in-situ conductance measurements, the effect of lowering the substrate temperature during Cu seed deposition has been studied on tantalum (Ta) and ruthenium (Ru) liner surfaces. On a Ta surface, it was found that lowering the deposition temperature to -65°C increases the nucleation rate of the Cu thin film, and reduces the minimum …


Wrinkling Of Floating Thin Polymer Films, Jiangshui Huang Sep 2010

Wrinkling Of Floating Thin Polymer Films, Jiangshui Huang

Doctoral Dissertations 1896 - February 2014

This thesis presents an extensive study of wrinkling of thin polystyrene films, tens of nanometers in thickness, floating on the surface of water or water modified with surfactant.

First, we study the wrinkling of floating thin polystyrene films under a capillary force exerted by a drop of water placed on its surface. The wrinkling pattern is characterized by the number and length of wrinkles. A metrology for measuring the elasticity and thickness of ultrathin films is constructed by combining the scaling relations that are developed for the length of the wrinkles with those for the number of wrinkles. This metrology …


A Solution-Based Approach To The Fabrication Of Novel Chalcogenide Glass Materials And Structures, Nathan Carlie Mar 2010

A Solution-Based Approach To The Fabrication Of Novel Chalcogenide Glass Materials And Structures, Nathan Carlie

All Dissertations

Chalcogenide glasses (ChGs) are well known for their large optical nonlinearities and high infrared transparency, and are candidate materials for next-generation thin film-based planar infrared (IR) optical applications. They are also known, however, to possess low thermal and mechanical stability as compared to oxide glasses. Traditional physical vapor deposition (PVD) methods used for the deposition of these materials as thin films often suffer from low deposition rates, deviation from stoichiometry, and cannot coat over complex surfaces. In order to retain the attractive optical properties of ChGs while enabling new fabrication routes and hybrid and composite material systems, we have developed …


Measurement Of Thermoelectric Properties Of Amorphous Silicon Based Thin Films, Rubina Sultan Jan 2010

Measurement Of Thermoelectric Properties Of Amorphous Silicon Based Thin Films, Rubina Sultan

Electronic Theses and Dissertations

It is important to understand thermal transport behavior in materials for technological and fundamental physics applications. Many efforts have been made in the past for explaining thermal conduction in solids. It has been observed that thermal transport properties may change with reducing size of the sample, especially as sample size approaches the nanoscale regime. The deviation in these properties, mainly in thermal conductivity, may change the choice of the material for different applications such as thermoelectricity. Thermoelectric materials are a possible source of sustainable energy and can play an important role in the fight against the present energy crisis. Recently, …


Spectroscopic Analysis Of Tungsten Oxide Thin Films For Sensor Applications, Jose Luis Enriquez Carrejo Jan 2010

Spectroscopic Analysis Of Tungsten Oxide Thin Films For Sensor Applications, Jose Luis Enriquez Carrejo

Open Access Theses & Dissertations

The objective of this study is targeted toward improving the quality of pure tungsten oxide (WO3) for application to the detection of poisoning gases, especially of H2S. While pure WO3 is a recognized candidate for gas sensing, its characteristics are strongly dependent on the conditions and methods used in its deposition.

Samples of WO3 thin films analyzed in this work were grown on silicon and sapphire substrates using RF magnetron sputtering at a number of different substrate temperatures and Ar:O2 pressure ratios. The properties of the samples were investigated spectroscopically with the goal of determining how variations in the above …


Thin Film Group Ii-Vi Solar Cells Based On Band-Offsets, James Keith Walton Jan 2010

Thin Film Group Ii-Vi Solar Cells Based On Band-Offsets, James Keith Walton

Dissertations and Theses

The amount of traditional energy sources are finite and the ecological impact of continuing to produce energy using fossil fuels will only exacerbate the carbon footprint. It is for these reasons that photovoltaic modules are becoming a larger and more necessary part the world's electricity production paradigm.

Photovoltaic (PV) semiconductor modules are grouped into three categories. 'First generation' monocrystalline and polycrystalline silicon modules that consist of p-n junctions created via the addition of impurities known as dopants. Almost 85% of solar cells produced at this time are 'first generation' and it is the high production costs of silicon PV modules …


Nanocomposite Thin Films Of Au Nanoparticles Embedded In Yttria-Stabilized Zirconia For Plasmonic-Based Harsh Environment Gas Detection, Phillip Henry Rogers Jan 2009

Nanocomposite Thin Films Of Au Nanoparticles Embedded In Yttria-Stabilized Zirconia For Plasmonic-Based Harsh Environment Gas Detection, Phillip Henry Rogers

Legacy Theses & Dissertations (2009 - 2024)

Increased health concerns due to the emission of gases linked to the production of tropospheric ozone by petroleum based fuel burning engines has resulted in the codification of more stringent emissions regulations domestically. Emissions regulations on commercial jetliners are one of the areas to be met with stricter standards. Currently there is not a sensing technology that can detect the emissions gases in the exhaust stream of a jet turbine engine with lower detection limits that meet these standards.


A Finite Difference Method For Studying Thermal Deformation In Three-Dimensional Thin Films Exposed To Ultrashort Pulsed Lasers, Suyang Zhang Jul 2008

A Finite Difference Method For Studying Thermal Deformation In Three-Dimensional Thin Films Exposed To Ultrashort Pulsed Lasers, Suyang Zhang

Doctoral Dissertations

Thermal analysis related to ultrashort-pulsed lasers has been intensely studied in science and engineering communities in recent years, because the pulse duration of ultrashort-pulsed lasers is only the order of sub-picoseconds to femtoseconds, and the lasers have exclusive capabilities in limiting the undesirable spread of the thermal process zone in the heated sample. Studying the thermal deformation induced by ultrashort-pulsed lasers is essential for preventing thermal damage. For the ultrashort-pulsed laser, the thermal damage is different from that caused by the long pulsed lasers and cracks occur after heating.

This dissertation presents a new finite difference method for studying thermal …