Open Access. Powered by Scholars. Published by Universities.®

Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 8 of 8

Full-Text Articles in Physics

Fabrication Of Magnetocaloric La(Fe,Si)13 Thick Films, N H. Dung, N B. Doan, P De Rango, L Ranno, Karl G. Sandeman, N M. Dempsey Jun 2020

Fabrication Of Magnetocaloric La(Fe,Si)13 Thick Films, N H. Dung, N B. Doan, P De Rango, L Ranno, Karl G. Sandeman, N M. Dempsey

Publications and Research

La(Fe,Si)13–based compounds are considered to be very promising magnetocaloric materials for magnetic refrigeration applications. Many studies have focused on this material family but only in bulk form. In this paper we report on the fabrication of thick films of La(Fe,Si)13, both with and without post-hydriding. These films exhibit magnetic and structural properties comparable to bulk materials. We also observe that the ferromagnetic phase transition has a negative thermal hysteresis, a phenomenon not previously found in this material but which may have its origins in the availability of a strain energy reservoir, as in the cases of …


Electron Diffraction Study Of Cobalt-Rich Hf-Co, Xingzhong Li, Yunlong Jin, Jeffrey E. Shield, Ralph Skomski, David J. Sellmyer Jan 2016

Electron Diffraction Study Of Cobalt-Rich Hf-Co, Xingzhong Li, Yunlong Jin, Jeffrey E. Shield, Ralph Skomski, David J. Sellmyer

Nebraska Center for Materials and Nanoscience: Faculty Publications

Intermetallic compounds having compositions from HfCo4 to HfCo8 were investigated by transmission electron microscopy, selected-area electron diffraction, and energy-dispersive x-ray spectroscopy. A major crystalline phase, closely related to the orthorhombic Zr2Co11 phase in structure, has been observed in the samples with the composition ranges from HfCo6 to HfCo8. The phase, referred to as either Hf2Co11 or HfCo7 phase in the literature, is actually one common phase, having a broad composition range and referred to as μ-phase in the present paper. In addition to the μ-phase, we …


Applications Of High Throughput (Combinatorial) Methodologies To Electronic, Magnetic, Optical, And Energy-Related Materials, Martin L. Green, Ichiro Takeuchi, Jason R. Hattrick-Simpers Jan 2013

Applications Of High Throughput (Combinatorial) Methodologies To Electronic, Magnetic, Optical, And Energy-Related Materials, Martin L. Green, Ichiro Takeuchi, Jason R. Hattrick-Simpers

Faculty Publications

High throughput (combinatorial) materials science methodology is a relatively new research paradigm that offers the promise of rapid and efficient materials screening, optimization, and discovery. The paradigm started in the pharmaceutical industry but was rapidly adopted to accelerate materials research in a wide variety of areas. High throughput experiments are characterized by synthesis of a “library” sample that contains the materials variation of interest (typically composition), and rapid and localized measurement schemes that result in massive data sets. Because the data are collected at the same time on the same “library” sample, they can be highly uniform with respect to …


Self-Assembled Nanometer-Scale Magnetic Networks On Surfaces: Fundamental Interactions And Functional Properties, Carlo Carbone, Sandra Gardonio, Paolo Moras, Samir Lounis, Marcus Heide, Gustav Bihlmayer, Nicolae Atodiresei, Peter Heinz Dederichs, Stefan Blügel, Sergio Vlaic, Anne Lehnert, Safia Ouazi, Stefano Rusponi, Harald Brune, Jan Honolka, Axel Enders, Klaus Kern, Sebastian Stepanow, Cornelius Krull, Timofey Balashov, Aitor Mugarza, Pietro Gambardella Apr 2011

Self-Assembled Nanometer-Scale Magnetic Networks On Surfaces: Fundamental Interactions And Functional Properties, Carlo Carbone, Sandra Gardonio, Paolo Moras, Samir Lounis, Marcus Heide, Gustav Bihlmayer, Nicolae Atodiresei, Peter Heinz Dederichs, Stefan Blügel, Sergio Vlaic, Anne Lehnert, Safia Ouazi, Stefano Rusponi, Harald Brune, Jan Honolka, Axel Enders, Klaus Kern, Sebastian Stepanow, Cornelius Krull, Timofey Balashov, Aitor Mugarza, Pietro Gambardella

Axel Enders Publications

Nanomagnets of controlled size, organized into regular patterns open new perspectives in the fields of nanoelectronics, spintronics, and quantum computation. Self-assembling processes on various types of substrates allow designing fine-structured architectures and tuning of their magnetic properties. Here, starting from a description of fundamental magnetic interactions at the nanoscale, we review recent experimental approaches to fabricate zero-, one-, and two-dimensional magnetic particle arrays with dimensions reduced to the atomic limit and unprecedented areal density. We describe systems composed of individual magnetic atoms, metal-organic networks, metal wires, and bimetallic particles, as well as strategies to control their magnetic moment, anisotropy, and …


High-Frequency Characterization Of Permalloy Nanosized Strips Using Network Analyzer Ferromagnetic Resonance, Bijoy K. Kuanr, Radek Lopusnik, Leszek M. Malkinski, Matt Wenger, Minghui Yu, Donald Scherer Ii, Z Celinski, R E. Camley Jan 2008

High-Frequency Characterization Of Permalloy Nanosized Strips Using Network Analyzer Ferromagnetic Resonance, Bijoy K. Kuanr, Radek Lopusnik, Leszek M. Malkinski, Matt Wenger, Minghui Yu, Donald Scherer Ii, Z Celinski, R E. Camley

Physics Faculty Publications

We report on the dynamic properties of Permalloy nanostrips at gagahertz frequencies. The thickness of the strips is 100 nm, strip width is 300 nm, strip spacing is 1 μm, and length is 0.3–100 μm; aspect ratios are 1:1, 1:2, 1:3, 1:5, 1:10, and 1:333. The dynamic behavior was studied by network analyzer ferromagnetic resonance (FMR) using Permalloy strips on a coplanar waveguide in flip-chip geometry. The FMR mode frequencies (fr) can be controlled by the aspect ratio as well as by the applied magnetic field (H). In longer strips (1:10 and 1:333), …


Demonstration Of Magnetoelectric Scanning Probe Microscopy, Jason R. Hattrick-Simpers, Liyang Dai, Manfred Wuttig, Ichiro Takeuchi, Eckhard Quandt Jan 2007

Demonstration Of Magnetoelectric Scanning Probe Microscopy, Jason R. Hattrick-Simpers, Liyang Dai, Manfred Wuttig, Ichiro Takeuchi, Eckhard Quandt

Faculty Publications

A near-field room temperature scanning magnetic probe microscope has been developed using a laminated magnetoelectric sensor. The simple trilayer longitudinal-transverse mode sensor, fabricated using Metglas as the magnetostrictive layer and polyvinylidene fluoride as the piezoelectric layer, shows an ac field sensitivity of 467±3μV∕Oe in the measured frequency range of 200Hz–8kHz. The microscope was used to image a 2mm diameter ring carrying an ac current as low as 10−5A. ac fields as small as 3×10−10T have been detected.


Micromagnetic Simulations On The Dependence Of Gilbert Damping On Domain Wall Velocities In Magnetic Nanowires, Andrew Kunz, B. Kastor May 2006

Micromagnetic Simulations On The Dependence Of Gilbert Damping On Domain Wall Velocities In Magnetic Nanowires, Andrew Kunz, B. Kastor

Physics Faculty Research and Publications

he dependence of damping on domain wall motion and velocity in Permalloy nanowires is presented. The domain wall motion in isolated two micron long Permalloy nanowires, with a rectangular cross-section 10 nm thick and 100 nm wide, is simulated using the Landau-Lifshitz Gilbert (LLG) simulation.Interpreting LLG dynamics can be difficult due to the dependence of the results on the Gilbert damping parameter alpha. The Walker model also predicts the critical field and domain wall velocity as a function of alpha. For these combined reasons the dependence of the domain wall speeds on the damping parameter is explored.


Normal Mode Mixing And Ferromagnetic Resonance Linewidth, Andrew Kunz, R. D. Mcmichael Sep 2002

Normal Mode Mixing And Ferromagnetic Resonance Linewidth, Andrew Kunz, R. D. Mcmichael

Physics Faculty Research and Publications

The normal modes of an inhomogeneous thin film are obtained by diagonalization of the perturbed Hamiltonian. The resulting modes are mixtures of the spin-wave modes and the uniform mode. We find that the ferromagnetic resonance intensity spectrum of the diagonalized system has a Lorentzian profile, and that the results correspond to the two-magnon model for weak perturbations. For stronger perturbations, the density of states is smoothed, and the spectrum becomes asymmetric due to the low-frequency cutoff of the spin-wave manifold. The technique is expected to be valid for perturbation amplitudes that are large enough to invalidate the assumptions of the …