Open Access. Powered by Scholars. Published by Universities.®

Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 3 of 3

Full-Text Articles in Physics

Synthesis And Characterization Of Polymer (Sulfonated Poly-Ether-Ether-Ketone) Based Nanocomposite (H-Boron Nitride) Membrane For Hydrogen Storage, R. Muthu Nareth, S. Rajashabla, Ramaiyan Navaneetha Kannan Jan 2015

Synthesis And Characterization Of Polymer (Sulfonated Poly-Ether-Ether-Ketone) Based Nanocomposite (H-Boron Nitride) Membrane For Hydrogen Storage, R. Muthu Nareth, S. Rajashabla, Ramaiyan Navaneetha Kannan

All Physics Faculty Publications

The development of light weight and compact hydrogen storage materials is still prerequisite to fuel-cell technology to be fully competitive. The present experimental study reports the hydrogen storage capability of sulfonated poly-ether-ether-ketone (SPEEK)-hexagonal boron nitride (h-BN) (SPEEK-h-BN) nanocomposite membranes. The nanocomposite membranes are prepared by considering various amount of h-BN (0, 1, 3 and 5 wt. %) by phase inversion technique. The degree of sulfonation of the PEEK (SPEEK) is found to be 65% by Proton Nuclear Magnetic Resonance (1H NMR) spectroscopy. Hydrogen adsorption studies have been carried out using a Seiverts-like hydrogenation setup. The membranes are characterized …


Optical Cell For Combinatorial In Situ Raman Spectroscopic Measurements Of Hydrogen Storage Materials At High Pressures And Temperatures, Jason R. Hattrick-Simpers, Wilbur S. Hurst, Sesha S. Srinivasan, James E. Maslar Jan 2011

Optical Cell For Combinatorial In Situ Raman Spectroscopic Measurements Of Hydrogen Storage Materials At High Pressures And Temperatures, Jason R. Hattrick-Simpers, Wilbur S. Hurst, Sesha S. Srinivasan, James E. Maslar

Faculty Publications

An optical cell is described for high-throughput backscattering Raman spectroscopic measurements of hydrogen storagematerials at pressures up to 10 MPa and temperatures up to 823 K. High throughput is obtained by employing a 60 mm diameter × 9 mm thick sapphire window, with a corresponding 50 mm diameter unobstructed optical aperture. To reproducibly seal this relatively large window to the cell body at elevated temperatures and pressures, a gold o-ring is employed. The sample holder-to-window distance is adjustable, making this cell design compatible with optical measurement systems incorporating lenses of significantly different focal lengths, e.g., microscope objectives and single element …


An Infrared Imaging Method For High-Throughput Combinatorial Investigation Of Hydrogenation-Dehydrogenation And New Phase Formation Of Thin Films, H. Oguchi, Jason R. Hattrick-Simpers, I. Takeuchi, E. J. Heilweil, L. A. Bendersky Jan 2009

An Infrared Imaging Method For High-Throughput Combinatorial Investigation Of Hydrogenation-Dehydrogenation And New Phase Formation Of Thin Films, H. Oguchi, Jason R. Hattrick-Simpers, I. Takeuchi, E. J. Heilweil, L. A. Bendersky

Faculty Publications

We have developed an infrared imaging setup enabling in situ infrared images to be acquired, and expanded on capabilities of an infrared imaging as a high-throughput screening technique, determination of a critical thickness of a Pd capping layer which significantly blocks infrared emission from below, enhancement of sensitivity to hydrogenation and dehydrogenation by normalizing raw infrared intensity of a Mg thin film to an inert reference, rapid and systematic screening of hydrogenation and dehydrogenation properties of a Mg–Ni composition spread covered by a thickness gradient Pd capping layer, and detection of formation of a Mg2Si phase in a …