Open Access. Powered by Scholars. Published by Universities.®

Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 4 of 4

Full-Text Articles in Physics

Sign-Problem-Free Monte Carlo Simulation Of Certain Frustrated Quantum Magnets, Fabien Alet, Kedar Damle, Sumiran Pujari Nov 2016

Sign-Problem-Free Monte Carlo Simulation Of Certain Frustrated Quantum Magnets, Fabien Alet, Kedar Damle, Sumiran Pujari

Physics and Astronomy Faculty Publications

We introduce a quantum Monte Carlo (QMC) method for efficient sign-problem-free simulations of a broad class of frustrated S =1/2 antiferromagnets using the basis of spin eigenstates of clusters to avoid the severe sign problem faced by other QMC methods. We demonstrate the utility of the method in several cases with competing exchange interactions and flag important limitations as well as possible extensions of the method.


Hard-Wall And Non-Uniform Lattice Monte Carlo Approaches To One-Dimensional Fermi Gases In A Harmonic Trap, Casey E. Berger, Joaquín E. Drut, William J. Porter Nov 2016

Hard-Wall And Non-Uniform Lattice Monte Carlo Approaches To One-Dimensional Fermi Gases In A Harmonic Trap, Casey E. Berger, Joaquín E. Drut, William J. Porter

Physics: Faculty Publications

We present in detail two variants of the lattice Monte Carlo method aimed at tackling systems in external trapping potentials: a uniform-lattice approach with hard-wall boundary conditions, and a non-uniform Gauss–Hermite lattice approach. Using those two methods, we compute the ground-state energy and spatial density profile for systems of N=4–8 harmonically trapped fermions in one dimension. From the favorable comparison of both energies and density profiles (particularly in regions of low density), we conclude that the trapping potential is properly resolved by the hard-wall basis. Our work paves the way to higher dimensions and finite temperature analyses, as calculations with …


Interaction-Induced Dirac Fermions From Quadratic Band Touching In Bilayer Graphene, Sumiran Pujari, Thomas C. Lang, Ganpathy Murthy, Ribhu K. Kaul Aug 2016

Interaction-Induced Dirac Fermions From Quadratic Band Touching In Bilayer Graphene, Sumiran Pujari, Thomas C. Lang, Ganpathy Murthy, Ribhu K. Kaul

Physics and Astronomy Faculty Publications

We revisit the effect of local interactions on the quadratic band touching (QBT) of the Bernal honeycomb bilayer model using renormalization group (RG) arguments and quantum Monte Carlo (QMC) simulations. We present a RG argument which predicts, contrary to previous studies, that weak interactions do not flow to strong coupling even if the free dispersion has a QBT. Instead, they generate a linear term in the dispersion, which causes the interactions to flow back to weak coupling. Consistent with this RG scenario, in unbiased QMC simulations of the Hubbard model we find compelling evidence that antiferromagnetism turns on at a …


First-Order Superfluid To Valence-Bond Solid Phase Transitions In Easy-Plane Su(N) Magnets For Small N, Jonathan D'Emidio, Ribhu K. Kaul Feb 2016

First-Order Superfluid To Valence-Bond Solid Phase Transitions In Easy-Plane Su(N) Magnets For Small N, Jonathan D'Emidio, Ribhu K. Kaul

Physics and Astronomy Faculty Publications

We consider the easy-plane limit of bipartite SU(N) Heisenberg Hamiltonians, which have a fundamental representation on one sublattice and the conjugate to fundamental on the other sublattice. For N = 2 the easy plane limit of the SU(2) Heisenberg model is the well-known quantum XY model of a lattice superfluid. We introduce a logical method to generalize the quantum XY model to arbitrary N, which keeps the Hamiltonian sign-free. We show that these quantum Hamiltonians have a world-line representation as the statistical mechanics of certain tightly packed loop models of N colors in which neighboring loops are …