Open Access. Powered by Scholars. Published by Universities.®

Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 5 of 5

Full-Text Articles in Physics

Tunable Magnetism In Metal Adsorbed Fluorinated Nanoporous Graphene, Pankaj Kumar, Vinit Sharma, Fernando A. Reboredo, Li-Ming Yang, Raghani Pushpa Aug 2016

Tunable Magnetism In Metal Adsorbed Fluorinated Nanoporous Graphene, Pankaj Kumar, Vinit Sharma, Fernando A. Reboredo, Li-Ming Yang, Raghani Pushpa

Physics Faculty Publications and Presentations

Developing nanostructures with tunable magnetic states is crucial for designing novel data storage and quantum information devices. Using density functional theory, we investigate the thermodynamic stability and magnetic properties of tungsten adsorbed tri-vacancy fluorinated (TVF) graphene. We demonstrate a strong structure-property relationship and its response to external stimuli via defect engineering in graphene-based materials. Complex interplay between defect states and the chemisorbed atom results in a large magnetic moment of 7 μB along with high in-plane magneto-crystalline anisotropy energy (MAE) of 17 meV. Under the influence of electric field, spin crossover effect accompanied by a change in the MAE …


Communication: Visualization And Spectroscopy Of Defects Induced By Dehydrogenation In Individual Silicon Nanocrystals, Dmitry A. Kislitsyn, Jon M. Mills, Vancho Kocevski, Sheng-Kuei Chiu, William J.I. Debenedetti, Christian F. Gervasi, Benjamen N. Taber, Ariel E. Rosenfield, Olle Eriksson, Ján Rusz, Andrea Mitchell Goforth, George V. Nazin Jun 2016

Communication: Visualization And Spectroscopy Of Defects Induced By Dehydrogenation In Individual Silicon Nanocrystals, Dmitry A. Kislitsyn, Jon M. Mills, Vancho Kocevski, Sheng-Kuei Chiu, William J.I. Debenedetti, Christian F. Gervasi, Benjamen N. Taber, Ariel E. Rosenfield, Olle Eriksson, Ján Rusz, Andrea Mitchell Goforth, George V. Nazin

Chemistry Faculty Publications and Presentations

We present results of a scanning tunneling spectroscopy (STS) study of the impact of dehydrogenation on the electronic structures of hydrogen-passivated silicon nanocrystals (SiNCs) supported on the Au(111)surface. Gradual dehydrogenation is achieved by injecting high-energy electrons into individual SiNCs, which results, initially, in reduction of the electronic bandgap, and eventually produces midgap electronic states. We use theoretical calculations to show that the STS spectra of midgap states are consistent with the presence of silicon dangling bonds, which are found in different charge states. Our calculations also suggest that the observed initial reduction of the electronic bandgap is attributable to the …


Hallmarks Of The Mott-Metal Crossover In The Hole-Doped Pseudospin-1/2 Mott Insulator Sr2Iro4, Yue Cao, Qiang Wang, Justin A. Waugh, Theodore J. Reber, Haoxiang Li, Xiaoqing Zhou, Stephen Parham, S. -R. Park, Nicholas C. Plumb, Eli Rotenberg, Aaron Bostwick, Jonathan D. Denlinger, Tongfei Qi, Michael A. Hermele, Gang Cao, Daniel S. Dessau Apr 2016

Hallmarks Of The Mott-Metal Crossover In The Hole-Doped Pseudospin-1/2 Mott Insulator Sr2Iro4, Yue Cao, Qiang Wang, Justin A. Waugh, Theodore J. Reber, Haoxiang Li, Xiaoqing Zhou, Stephen Parham, S. -R. Park, Nicholas C. Plumb, Eli Rotenberg, Aaron Bostwick, Jonathan D. Denlinger, Tongfei Qi, Michael A. Hermele, Gang Cao, Daniel S. Dessau

Physics and Astronomy Faculty Publications

The physics of doped Mott insulators remains controversial after decades of active research, hindered by the interplay among competing orders and fluctuations. It is thus highly desired to distinguish the intrinsic characters of the Mott-metal crossover from those of other origins. Here we investigate the evolution of electronic structure and dynamics of the hole-doped pseudospin-1/2 Mott insulator Sr2IrO4. The effective hole doping is achieved by replacing Ir with Rh atoms, with the chemical potential immediately jumping to or near the top of the lower Hubbard band. The doped iridates exhibit multiple iconic low-energy features previously observed …


On The Structural Origin Of The Single-Ion Magnetic Anisotropy In Lufeo3, Shi Cao, Xiaozhe Zhang, Tula R. Paudel, Kishan Sinha, Xiao Wang, Xuanyuan Jiang, Wenbin Wang, Stuart Brutsche, Jian Wang, Philip J. Ryan, Jong-Woo Kim, Xuemei Cheng, Evgeny Y. Tsymbal, Peter A. Dowben, Xiaoshan Xu Apr 2016

On The Structural Origin Of The Single-Ion Magnetic Anisotropy In Lufeo3, Shi Cao, Xiaozhe Zhang, Tula R. Paudel, Kishan Sinha, Xiao Wang, Xuanyuan Jiang, Wenbin Wang, Stuart Brutsche, Jian Wang, Philip J. Ryan, Jong-Woo Kim, Xuemei Cheng, Evgeny Y. Tsymbal, Peter A. Dowben, Xiaoshan Xu

Evgeny Tsymbal Publications

Electronic structures for the conduction bands of both hexagonal and orthorhombic LuFeO3 thin films have been measured using x-ray absorption spectroscopy at oxygen K (O K) edge. Dramatic differences in both the spectra shape and the linear dichroism are observed. These differences in the spectra can be explained using the differences in crystal field splitting of the metal (Fe and Lu) electronic states and the differences in O 2p-Fe 3d and O 2p-Lu 5d hybridizations. While the oxidation states has not changed, the spectra are sensitive to the changes in the local environments of the Fe3+ and Lu …


Mapping Of Defects In Individual Silicon Nanocrystals Using Real- Space Spectroscopy, Dmitry A. Kislitsyn, Vancho Kocevski, Jon M. Mills, Sheng-Kuei Chiu, Christian F. Gervasi, Benjamen N. Taber, Ariel E. Rosenfield, Olle Eriksson, Ján Rusz, Andrea Mitchell Goforth, George V. Nazin Mar 2016

Mapping Of Defects In Individual Silicon Nanocrystals Using Real- Space Spectroscopy, Dmitry A. Kislitsyn, Vancho Kocevski, Jon M. Mills, Sheng-Kuei Chiu, Christian F. Gervasi, Benjamen N. Taber, Ariel E. Rosenfield, Olle Eriksson, Ján Rusz, Andrea Mitchell Goforth, George V. Nazin

Chemistry Faculty Publications and Presentations

The photophysical properties of silicon semiconductor nanocrystals (SiNCs) are extremely sensitive to the presence of surface chemical defects, many of which are easily produced by oxidation under ambient conditions. The diversity of chemical structures of such defects and the lack of tools capable of probing individual defects continue to impede understanding of the roles of these defects in SiNC photophysics. We use scanning tunneling spectroscopy to study the impact of surface defects on the electronic structures of hydrogen-passivated SiNCs supported on the Au(111) surface. Spatial maps of the local electronic density of states (LDOS) produced by our measurements allowed us …