Open Access. Powered by Scholars. Published by Universities.®

Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 8 of 8

Full-Text Articles in Physics

One-Dimensional And Two-Dimensional Simulations Of Helical Homopolymers: A Comparative Analysis Of Energy Stabilization And Efficiency​, Nathan Roberts, Matthew Hooks Apr 2023

One-Dimensional And Two-Dimensional Simulations Of Helical Homopolymers: A Comparative Analysis Of Energy Stabilization And Efficiency​, Nathan Roberts, Matthew Hooks

Scholars Week

The purpose of our work is to analyze the results of a two-dimensional parallel tempering Monte Carlo simulation of a coarse-grained helical homopolymer. The two-dimensional simulation allows Hamiltonian exchanges across both temperature and torsion values, while the one-dimensional simulation exclusively exchanges across temperature values. The genesis of each simulation is defined by a randomly configured polymer; as time progresses, randomly generated movements of monomers decrease the structure’s energy until equilibrium is reached. Equilibrium is determined by finding the absolute minimum of the data series, computing the mean of all remaining data, and finding the intersection between the rolling average and …


"Semiclassical Mastermind", Curtis Bair, Alexa S. Cunningham, Joshua Qualls Jan 2023

"Semiclassical Mastermind", Curtis Bair, Alexa S. Cunningham, Joshua Qualls

Posters-at-the-Capitol

Games are often used in the classroom to teach mathematical and physical concepts. Yet the available activities used to introduce quantum mechanics are often overwhelming even to upper-level students. Further, the "games" in question range in focus and complexity from superficial introductions to games where quantum strategies result in decidedly nonclassical advantages, making it nearly impossible for people interested in quantum mechanics to have a simple introduction to the topic. In this talk, we introduce a straightforward and newly developed "Semiclassical Mastermind" based on the original version of mastermind but replace the colored pegs with 6 possible qubits (x+, x-, …


Design And Construction Of A Modular Nai(Tl) Detector Array For Use In The Parity- And Time Reversal Violation Measurements For Noptrex, Jon Mills, Jason Fry Dec 2021

Design And Construction Of A Modular Nai(Tl) Detector Array For Use In The Parity- And Time Reversal Violation Measurements For Noptrex, Jon Mills, Jason Fry

Posters-at-the-Capitol

The goal of the NOPTREX collaboration is to probe the Standard Model by utilizing the properties of low energy neutron-nucleus resonances to find evidence of parity- and time-reversal-odd violations. In order to conduct these sensitive experiments, it is needed to design and simulate an array of modular, high precision NaI(Tl) detectors. These detectors will be designed to operate in both pulse and current modes. We have tentative beam time at LANSCE to perform a search for new parity violation in heavy nuclei as candidates for time reversal and to perform a research and development effort on the n+d=t+gamma experiment. We …


Two-Dimensional Layered Materials (Graphene-Mos2) Nanocatalysts For Hydrogen Production, Jacob Dobler, Taylor Robinson, Sanju Gupta 7455940 Nov 2018

Two-Dimensional Layered Materials (Graphene-Mos2) Nanocatalysts For Hydrogen Production, Jacob Dobler, Taylor Robinson, Sanju Gupta 7455940

Posters-at-the-Capitol

Recent development of two-dimensional layered materials including graphene-family and related nanomaterials have arisen as potential game changer for energy, water and sensing applications. While graphene is a form of carbon arranged hexagonally within atomic thin sheet, MoS2 is becoming a popular, efficient, and cost-effective catalyst for electrochemical energy devices, in contrast to expensive platinum and palladium catalysts. In this work, we electrochemically desulfurize few-layer molybdenum disulfide (MoS2) and aerogels with reduced graphene oxide (rGO) prepared under hydrothermal conditions ((P< 20 bar, T< 200 oC), for improving hydrogen evolution reaction (HER) activity via point defects (S-vacancy). Moreover, the interactions between rGO …


Physical Properties Of Engineered Nanocomposites For Defense Applications, Alex Henson, Sanju Gupta Nov 2018

Physical Properties Of Engineered Nanocomposites For Defense Applications, Alex Henson, Sanju Gupta

Posters-at-the-Capitol

Polymer nanocomposites are significant for modern and future technologies (aerospace, defense, water purification etc.) due to their tailored properties, lightweight and low cost. However, ‘forward’ engineered polymer (host matrix) composites with smaller size nanoparticles (guest) providing desired properties targeting specific applications remains a challenging task as they depend largely on nanoparticles size, shape and loading (volume fraction). This study develops polymer nanocomposites impregnated with ‘organic-inorganic’ silsesquioxane nanoparticles and graphene nanoribbons, and investigates microscopic structure and dynamics of interfacial layer to predict macroscale properties. The nanocomposites consist of poly(2-vinylpyridine) (P2VP) polymer (segment ~5nm) with spherical silsesquioxane nanoparticles (diameter ~2-5nm) and planar …


The Undeniable Attraction Of Lunar Swirls, Cierra Waller, Dhananjay Ravat Nov 2018

The Undeniable Attraction Of Lunar Swirls, Cierra Waller, Dhananjay Ravat

Posters-at-the-Capitol

Lunar swirls are complex patterns on the Moon with distinct brightness signatures and magnetic characteristics. Current research has suggested that the formation of lunar swirls relies on local magnetic fields to shield impinging solar wind, based on a shift in electromagnetic wavelength peaks related to solar radiation and space weathering. Our research combined recent models and methods to characterize these anomalies at the surface of the Moon, exploring the effects of field strength and position. We have produced a high resolution map of a famous swirl named Reiner Gamma using magnetic dipole modeling. These maps and models are considered when …


Graphene Quantum Dots Electrochemistry And Development Of Sensitive Electrochemical Biosensor [Hybrid Poster 1-B], Tyler Smith, Alexander Banaszak Nov 2016

Graphene Quantum Dots Electrochemistry And Development Of Sensitive Electrochemical Biosensor [Hybrid Poster 1-B], Tyler Smith, Alexander Banaszak

Posters-at-the-Capitol

Graphene quantum dots (GQDs) are zero-dimensional material derived from graphene derivatives with characteristics from the structure of graphene with quantum confinement and edge effects possessing unique properties. Intense research activity in GQDs is attributed to their novel physical-chemical phenomena arising from the sp2-bonded carbon core surrounded with edge functional moieties. In this work, GQDs of optimal 5-7 nm size are investigated for their fundamental electrochemical properties and use in electrochemical sensing including enzyme-based glucose biosensor. Glucose oxidase (GOx) was immobilized on GQDs modified glassy carbon (GC) and the UV-Vis absorption and fluorescence spectroscopy, electron microscopy, cyclic …


Molecular Sensitivity And Selectivity Of Metal Nanoparticles Decorated Graphene As ‘Smart’ Surface-Enhanced Raman Scattering (Sers) Platforms [Hybrid Poster 1-A], Alexander Banaszak, Tyler Smith Nov 2016

Molecular Sensitivity And Selectivity Of Metal Nanoparticles Decorated Graphene As ‘Smart’ Surface-Enhanced Raman Scattering (Sers) Platforms [Hybrid Poster 1-A], Alexander Banaszak, Tyler Smith

Posters-at-the-Capitol

Raman scattering signal enhancement that uses graphene as support, graphene-enhanced Raman scattering (GERS), is a recent phenomenon. It can produce clean and reproducible Raman signals of chemical molecules with significantly enhanced signal intensity in contrast to traditional surface- (SERS) and tip- enhanced Raman scattering (TERS) techniques. While enhancement in SERS and TERS arise due to the electromagnetic mechanism, GERS also relies on a chemical mechanism and therefore shows unique molecular sensitivity and selectivity. In this work, we developed graphene materials decorated with noble metal (silver and gold) nanoparticles for detection of different chemical molecules e.g. methylene blue (MB) and rhodamine …