Open Access. Powered by Scholars. Published by Universities.®

Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 5 of 5

Full-Text Articles in Physics

A Nonlocal Application Of The Dispersive Optical Model To 208pb, Michael Keim Oct 2017

A Nonlocal Application Of The Dispersive Optical Model To 208pb, Michael Keim

Undergraduate Research Symposium Posters

A nonlocal application of the dispersive optical model to neutrons and protons in 208Pb is presented. A nucleon self-energy is described by parametrized real and imaginary parts connected through a dispersion relation. This parametrization includes nonlocal Hartree-Fock and spin-orbit and local Coulomb real terms, and nonlocal volume and surface and local spin-orbit imaginary terms. A simple Gaussian nonlocality is employed, and appropriate asymmetry parameters are included to describe the N-Z dependence of the nucleus. These parameters are constrained by fitting to experimental data, including particle numbers, energy levels, the charge density, elastic-scattering angular distributions, reaction cross sections, and the …


Design And Activation Of Frequency Tunable 200ghz Gyrotron, Natalie Golota, Faith Scott, Edward Saliba, Brice Albert, Alexander Barnes Jan 2017

Design And Activation Of Frequency Tunable 200ghz Gyrotron, Natalie Golota, Faith Scott, Edward Saliba, Brice Albert, Alexander Barnes

Undergraduate Research Symposium Posters

Dynamic Nuclear Polarization (DNP) when combined with Nuclear Magnetic Resonance (NMR) yields high sensitivity spectra while decreasing sample acquisition time. DNP transfers polarization from electron to nuclear spins, giving a strong enhancement of NMR signal. DNP is rapidly developing area of research due in part to application of cyclotron resonance masers (gyrotron) as high power microwave sources. Gyrotrons provide a high-power, high-frequency microwave source that can be used in close proximity to high field NMR magnets. Gyrotrons are operated under strong vacuum and within a cryogenic superconducting magnetic. Gyrotron microwave power is generated by a magnetron injection gun (MIG) composed …


Application Of The Dispersive Optical Model To 208pb, Michael Keim Oct 2016

Application Of The Dispersive Optical Model To 208pb, Michael Keim

Undergraduate Research Symposium Posters

A review of developments for the application of the dispersive optical model (DOM) to 208Pb is presented. By providing appropriate parameters describing real and imaginary parts of a nonlocal self-energy, connected through a dispersion relation, reasonable reproductions of both scattering and bound-state properties are generated. By fitting these parameters to experimental data, a more accurate description of the neutron skin may be achieved, which would have implications for the physics of neutron stars.


Topological Transitions In A Superconducting Qubit, Arman Guerra Jan 2016

Topological Transitions In A Superconducting Qubit, Arman Guerra

Undergraduate Research Symposium Posters

Topology, as it pertains to quantum objects, has become an important area of research because of recent discoveries of topological phases and insulators in condensed matter physics. It can be used as a tool to accurately describe phenomena in many different quantum systems. I present my study of topology as it relates to two level systems, and experiments to probe the topology of transmon qubits. These simple quantum circuits allow for a high level of control which makes them good candidates to study topological properties and to model more complicated systems. Specifically, topological transitions of the first Chern number arise …


Calculating The Observable Properties Of Mass Accreting Black Holes, Heather Lee Jan 2016

Calculating The Observable Properties Of Mass Accreting Black Holes, Heather Lee

Undergraduate Research Symposium Posters

My goal is to generalize Chandrasekhar’s formulas to include partial Rayleigh Scattering. In my summer research, I successfully recalculated key tables and solutions from his book and I am working in generalizing his results for use in an infinitely deep electron atmosphere. Here, I will summarize how Chandrasekhar derived his formulas and how to potentially generalize them to include absorption.