Open Access. Powered by Scholars. Published by Universities.®

Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

PDF

Physics and Astronomy Faculty Publications

Galaxies: clusters: general

Articles 1 - 7 of 7

Full-Text Articles in Physics

The X-Ray Properties Of Optically Selected Clusters Of Galaxies, A. K. Hicks, G. W. Pratt, M. Donahue, E. Ellingson, M. Gladders, H. Böhringer, H. K. C. Yee, Renbin Yan, J. H. Croston, D. G. Gilbank May 2013

The X-Ray Properties Of Optically Selected Clusters Of Galaxies, A. K. Hicks, G. W. Pratt, M. Donahue, E. Ellingson, M. Gladders, H. Böhringer, H. K. C. Yee, Renbin Yan, J. H. Croston, D. G. Gilbank

Physics and Astronomy Faculty Publications

We present the results of Chandra and Suzaku X-ray observations of nine moderate-redshift (0.16 < z < 0.42) clusters discovered via the Red-sequence Cluster Survey (RCS). Surface brightness profiles are fitted to β-models, gas masses are determined, integrated spectra are extracted within R2500, and X-ray temperatures and luminosities are inferred. TheLXTX relationship expected from self-similar evolution is tested by comparing this sample to our previous X-ray investigation of nine high-redshift (0.6 < z < 1.0) optically selected clusters. We find that optically selected clusters are systematically less luminous than X-ray selected clusters of similar X-ray temperature at both moderate and high z. We are unable to constrain evolution in the LXTX relation with these data, but find it consistent with no evolution, within relatively large uncertainties. To investigate selection effects, we compare the X-ray properties of our sample to those of clusters in the …


Residual Cooling And Persistent Star Formation Amid Active Galactic Nucleus Feedback In Abell 2597, G. R. Tremblay, C. P. O'Dea, S. A. Baum, T. E. Clarke, C. L. Sarazin, J. N. Bregman, F. Combes, M. Donahue, A. C. Edge, A. C. Fabian, Gary J. Ferland, B. R. Mcnamara, R. Mittal, J. B. R. Oonk, A. C. Quillen, H. R. Russell, J. S. Sanders, P. Salomé, G. M. Voit, R. J. Wilman, M. W. Wise Aug 2012

Residual Cooling And Persistent Star Formation Amid Active Galactic Nucleus Feedback In Abell 2597, G. R. Tremblay, C. P. O'Dea, S. A. Baum, T. E. Clarke, C. L. Sarazin, J. N. Bregman, F. Combes, M. Donahue, A. C. Edge, A. C. Fabian, Gary J. Ferland, B. R. Mcnamara, R. Mittal, J. B. R. Oonk, A. C. Quillen, H. R. Russell, J. S. Sanders, P. Salomé, G. M. Voit, R. J. Wilman, M. W. Wise

Physics and Astronomy Faculty Publications

New Chandra X-ray and Herschel Far-Infrared (FIR) observations enable a multiwavelength study of active galactic nucleus (AGN) heating and intracluster medium (ICM) cooling in the brightest cluster galaxy (BCG) of Abell 2597 (z= 0.0821). The new Chandra observations reveal the central ≲30 kpc X-ray cavity network to be more extensive than previously thought, and associated with enough enthalpy to theoretically inhibit the inferred classical cooling flow. Nevertheless, we present new evidence, consistent with previous results, that a moderately strong residual cooling flow is persisting at 4–8 per cent of the classically predicted rates in a spatially structured manner …


Multiphase Signatures Of Active Galactic Nucleus Feedback In Abell 2597, G. R. Tremblay, C. P. O'Dea, S. A. Baum, T. E. Clarke, C. L. Sarazin, J. N. Bregman, F. Combes, M. Donahue, A. C. Edge, A. C. Fabian, Gary J. Ferland, B. R. Mcnamara, R. Mittal, J. B. R. Oonk, A. C. Quillen, H. R. Russell, J. S. Sanders, P. Salomé, G. M. Voit, R. J. Wilman, M. W. Wise Jan 2012

Multiphase Signatures Of Active Galactic Nucleus Feedback In Abell 2597, G. R. Tremblay, C. P. O'Dea, S. A. Baum, T. E. Clarke, C. L. Sarazin, J. N. Bregman, F. Combes, M. Donahue, A. C. Edge, A. C. Fabian, Gary J. Ferland, B. R. Mcnamara, R. Mittal, J. B. R. Oonk, A. C. Quillen, H. R. Russell, J. S. Sanders, P. Salomé, G. M. Voit, R. J. Wilman, M. W. Wise

Physics and Astronomy Faculty Publications

We present new Chandra X-ray observations of the brightest cluster galaxy (BCG) in the cool-core cluster Abell 2597 (z= 0.0821). The data reveal an extensive kpc-scale X-ray cavity network as well as a 15-kpc filament of soft-excess gas exhibiting strong spatial correlation with archival Very Large Array radio data. In addition to several possible scenarios, multiwavelength evidence may suggest that the filament is associated with multiphase (103–107 K) gas that has been entrained and dredged-up by the propagating radio source. Stemming from a full spectral analysis, we also present profiles and 2D spectral maps of …


Collisional Heating As The Origin Of Filament Emission In Galaxy Clusters, G. J. Ferland, A. C. Fabian, N. A. Hatch, R. M. Johnstone, R. L. Porter, P. A. M. Vanhoof, R. J. R. Williams Jan 2009

Collisional Heating As The Origin Of Filament Emission In Galaxy Clusters, G. J. Ferland, A. C. Fabian, N. A. Hatch, R. M. Johnstone, R. L. Porter, P. A. M. Vanhoof, R. J. R. Williams

Physics and Astronomy Faculty Publications

It has long been known that photoionization, whether by starlight or other sources, has difficulty in accounting for the observed spectra of the optical filaments that often surround central galaxies in large clusters. This paper builds on the first of this series in which we examined whether heating by energetic particles or dissipative magnetohydrodynamic (MHD) wave can account for the observations. The first paper focused on the molecular regions which produce strong H2 and CO lines. Here we extend the calculations to include atomic and low-ionization regions. Two major improvements to the previous calculations have been made. The model …


The Origin Of Molecular Hydrogen Emission In Cooling-Flow Filaments, Gary J. Ferland, A. C. Fabian, N. A. Hatch, R. M. Johnstone, R. L. Porter, P. A. M. Vanhoof, R. J. R. Williams Jan 2008

The Origin Of Molecular Hydrogen Emission In Cooling-Flow Filaments, Gary J. Ferland, A. C. Fabian, N. A. Hatch, R. M. Johnstone, R. L. Porter, P. A. M. Vanhoof, R. J. R. Williams

Physics and Astronomy Faculty Publications

The optical filaments found in many cooling flows in galaxy clusters consist of low-density (∼103 cm−3) cool (∼103 K) gas surrounded by significant amounts of cosmic-ray and magnetic field energy. Their spectra show anomalously strong low-ionization and molecular emission lines when compared with Galactic molecular clouds exposed to ionizing radiation such as the Orion complex. Previous studies have shown that the spectra cannot be produced by O-star photoionization. Here, we calculate the physical conditions in dusty gas that is well shielded from external sources of ionizing photons and is energized either by cosmic rays or dissipative …


Discovery Of Atomic And Molecular Mid-Infrared Emission Lines In Off-Nuclear Regions Of Ngc 1275 And Ngc 4696 With The Spitzer Space Telescope, R. M. Johnstone, N. A. Hatch, Gary J. Ferland, A. C. Fabian, C. S. Crawford, R. J. Wilman Jan 2007

Discovery Of Atomic And Molecular Mid-Infrared Emission Lines In Off-Nuclear Regions Of Ngc 1275 And Ngc 4696 With The Spitzer Space Telescope, R. M. Johnstone, N. A. Hatch, Gary J. Ferland, A. C. Fabian, C. S. Crawford, R. J. Wilman

Physics and Astronomy Faculty Publications

We present Spitzer high-resolution spectra of off-nuclear regions in the central cluster galaxies NGC 1275 and NGC 4696 in the Perseus and Centaurus clusters, respectively. Both objects are surrounded by extensive optical emission-line filamentary nebulae, bright outer parts of which are the targets of our observations. The 10–37 μm spectra show strong pure-rotational lines from molecular hydrogen revealing a molecular component to the filaments which has an excitation temperature of ∼300−400 K. The flux in the 0−0 S(1) molecular hydrogen line correlates well with the strength of the optical lines, having about 3 per cent of the Hα+[N II] emission. …


The Physical Conditions Within Dense Cold Clouds In Cooling Flows - Ii, Gary J. Ferland, A. C. Fabian, R. M. Johnstone Jul 2002

The Physical Conditions Within Dense Cold Clouds In Cooling Flows - Ii, Gary J. Ferland, A. C. Fabian, R. M. Johnstone

Physics and Astronomy Faculty Publications

This is a progress report on our numerical simulations of conditions in the cold cores of cooling flow condensations. The physical conditions in any non-equilibrium plasma are the result of a host of microphysical processes, many involving reactions that are research areas in themselves. We review the dominant physical processes in our previously published simulations, to clarify those issues that have caused confusion in the literature. We show that conditions in the core of an X-ray-illuminated cloud are very different from those found in molecular clouds, largely because carbon remains substantially atomic and provides powerful cooling through its far infrared …