Open Access. Powered by Scholars. Published by Universities.®

Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

PDF

Physics Faculty Publications and Presentations

Series

2020

Holographic Images -- Optics

Articles 1 - 2 of 2

Full-Text Articles in Physics

Genetically Encoded Phase Contrast Agents For Digital Holographic Microscopy, Arash Farhadi, Manuel Bedrossian, Justin Lee, Gabrielle H. Ho, Mikhail G. Shapiro, Jay Nadeau Oct 2020

Genetically Encoded Phase Contrast Agents For Digital Holographic Microscopy, Arash Farhadi, Manuel Bedrossian, Justin Lee, Gabrielle H. Ho, Mikhail G. Shapiro, Jay Nadeau

Physics Faculty Publications and Presentations

Quantitative phase imaging and digital holographic microscopy have shown great promise for visualizing the motion, structure and physiology of microorganisms and mammalian cells in three dimensions. However, these imaging techniques currently lack molecular contrast agents analogous to the fluorescent dyes and proteins that have revolutionized fluorescence microscopy. Here we introduce the first genetically encodable phase contrast agents based on gas vesicles. The relatively low index of refraction of the air-filled core of gas vesicles results in optical phase advancement relative to aqueous media, making them a “positive” phase contrast agent easily distinguished from organelles, dyes, or microminerals. We demonstrate this …


Enhancing Final Image Contrast In Off-Axis Digital Holography Using Residual Fringes, Manuel Bedrossian, Kent Wallace, Eugene Serabyn, Chris Lindensmith, Jay Nadeau Jan 2020

Enhancing Final Image Contrast In Off-Axis Digital Holography Using Residual Fringes, Manuel Bedrossian, Kent Wallace, Eugene Serabyn, Chris Lindensmith, Jay Nadeau

Physics Faculty Publications and Presentations

We show that background fringe-pattern subtraction is a useful technique for removing static noise from off-axis holographic reconstructions and can enhance image contrast in volumetric reconstructions by an order of magnitude in the case for instruments with relatively stable fringes. We demonstrate the fundamental principle of this technique and introduce some practical considerations that must be made when implementing this scheme, such as quantifying fringe stability. This work also shows an experimental verification of the background fringe subtraction scheme using various biological samples.