Open Access. Powered by Scholars. Published by Universities.®

Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 4 of 4

Full-Text Articles in Physics

Particle Modeling Of Non-Equilibrium Field Emission Driven Rf Microplasmas, Siva Sashank Tholeti Aug 2016

Particle Modeling Of Non-Equilibrium Field Emission Driven Rf Microplasmas, Siva Sashank Tholeti

Open Access Dissertations

Non-equilibrium microplasmas at atmospheric pressures have been investigated for active flow control, micropropulsion and electronic display applications to name a few. The operational voltages for these microplasmas are on the order of kilovolts. When the electric field at the electrodes reaches GV/m or tens of GV/m either due to reduced interelectrode spacing and surface irregularities or due to carefully designed nanostructures on the electrodes, quantum processes such as field emission and field ionization come into effect. These can potentially reduce the operational voltages of microplasma devices by an order of magnitude. Due to the rarefied and non-equilibrium nature of these …


Particle Swarms In Confining Geometries, Eric Robert Boomsma Oct 2014

Particle Swarms In Confining Geometries, Eric Robert Boomsma

Open Access Dissertations

The transport of micro- and nano-particles in subsurface fluid deposits is an area of increasing interest due to the rising use of these particles for consumer and industrial purposes. Subsurface particle transport is complicated by the presence of fractures and fracture networks which govern the paths that particles will be able to take. In this thesis, subsurface particle transport will be investigated using particle swarms; collections of hydro-dynamically interacting particles which exhibit group behavior. The effects of fluid viscosity, particle properties, fracture geometry, and fracture aperture on swarm behavior were experimentally investigated. ^ Swarm parameters were examined in time with …


Optical Spectroscopy And Langmuir Probe Diagnostics Of Microwave Plasma In Synthesis Of Graphene-Based Nanomaterials, Alfredo D. Tuesta Oct 2014

Optical Spectroscopy And Langmuir Probe Diagnostics Of Microwave Plasma In Synthesis Of Graphene-Based Nanomaterials, Alfredo D. Tuesta

Open Access Dissertations

Along with the revolutionary discovery and development of carbon nanostructures, such as carbon nanotubes and graphitic sheets, has arrived the potential for their application in the fields of medicine, bioscience and engineering due to their exceptional structural, thermal and electrical properties. As roll-to-roll plasma deposition systems begin to provide means for large scale production of these nanodevices, a detailed understanding of the environment responsible for their synthesis is imperative in order to more accurately design and control the growth of carbon nanodevices. To date, the understanding of the chemistry and kinetics that govern the synthesis of carbon nanodevices is only …


Atomistic Simulation Of Plasma Interaction With Plasma Facing Components In Fusion Reactors, Xue Yang Oct 2013

Atomistic Simulation Of Plasma Interaction With Plasma Facing Components In Fusion Reactors, Xue Yang

Open Access Dissertations

The interaction between plasma and fusion relevant materials is one of the critical issues in successfully using those materials in Tokamak reactors. This research uses molecular dynamics, kinetic Monte Carlo and binary collision approximation methods to model fusion relevant material bombarded by energetic particles to investigate retention, deposition, sputtering, erosion, blistering effects, diffusion, and so on.

The deuterium bombardment of monocrystalline tungsten was modeled by LAMMPS code using Tersoff type interatomic potential. The deuterium trapping rate, implantation depth, and stopping time in 600-2000 K tungsten bombarded by 5-100 eV deuterium atoms were simulated. Irradiated monocrystalline tungsten became amorphous prior to …