Open Access. Powered by Scholars. Published by Universities.®

Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

PDF

Evgeny Tsymbal Publications

Series

Ferroelectric Tunnel Junctions

Publication Year

Articles 1 - 2 of 2

Full-Text Articles in Physics

Tunneling Anisotropic Magnetoresistance In Ferroelectric Tunnel Junctions, Artem Alexandrov, M. Ye. Zhuravlev, Evgeny Y. Tsymbal Aug 2019

Tunneling Anisotropic Magnetoresistance In Ferroelectric Tunnel Junctions, Artem Alexandrov, M. Ye. Zhuravlev, Evgeny Y. Tsymbal

Evgeny Tsymbal Publications

Using a simple quantum-mechanical model, we explore a tunneling anisotropic magnetoresistance (TAMR) effect in ferroelectric tunnel junctions (FTJs) with a ferromagnetic electrode and a ferroelectric barrier layer, where spontaneous polarization gives rise to the Rashba and Dresselhaus spin-orbit coupling (SOC). For realistic parameters of the model, we predict sizable TAMR measurable experimentally. For asymmetric FTJs, whose electrodes have different work functions, the built-in electric field affects the SOC parameters and leads to TAMR being dependent on the ferroelectric polarization direction. The SOC change with polarization switching affects tunneling conductance, revealing an alternative mechanism of tunneling electroresistance. These results demonstrate alternative …


Defect-Assisted Tunneling Electroresistance In Ferroelectric Tunnel Junctions, Konstantin Klyukin, L. L. Tao, Evgeny Y. Tsymbal, Vitaly Alexandrov Aug 2018

Defect-Assisted Tunneling Electroresistance In Ferroelectric Tunnel Junctions, Konstantin Klyukin, L. L. Tao, Evgeny Y. Tsymbal, Vitaly Alexandrov

Evgeny Tsymbal Publications

Recent experimental results have demonstrated ferroelectricity in thin films of SrTiO3 induced by antisite TiSr defects. This opens a possibility to use SrTiO3 as a barrier layer in ferroelectric tunnel junctions (FTJs)—emerging electronic devices promising for applications in nanoelectronics. Here using density functional theory combined with quantum-transport calculations applied to a prototypical Pt/SrTiO3/Pt FTJ, we demonstrate that the localized in-gap energy states produced by the antisite TiSr defects are responsible for the enhanced electron tunneling conductance which can be controlled by ferroelectric polarization. Our tight-binding modeling, which takes into account multiple defects, shows that …