Open Access. Powered by Scholars. Published by Universities.®

Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

PDF

Evgeny Tsymbal Publications

Series

Antiperovskite

Articles 1 - 2 of 2

Full-Text Articles in Physics

Anomalous Hall Conductivity Of Noncollinear Magnetic Antiperovskites, Gautam Gurung, Ding-Fu Shao, Tula R. Paudel, Evgeny Y. Tsymbal Apr 2019

Anomalous Hall Conductivity Of Noncollinear Magnetic Antiperovskites, Gautam Gurung, Ding-Fu Shao, Tula R. Paudel, Evgeny Y. Tsymbal

Evgeny Tsymbal Publications

The anomalous Hall effect (AHE) is a well-known fundamental property of ferromagnetic metals, commonly associated with the presence of a net magnetization. Recently, an AHE has been discovered in noncollinear antiferromagnetic (AFM) metals. Driven by nonvanishing Berry curvature of AFM materials with certain magnetic space-group symmetry, anomalous Hall conductivity (AHC) is very sensitive to the specific type of magnetic ordering. Here, we investigate the appearance of AHC in antiperovskite materials family ANMn3 (A = Ga, Sn, Ni), where different types of noncollinear magnetic ordering can emerge. Using symmetry analyses and first-principles density-functional theory calculations, we show that with almost …


Electrically Reversible Magnetization At The Antiperovskite/Perovskite Interface, Ding-Fu Shao, Gautam Gurung, Tula R. Paudel, Evgeny Y. Tsymbal Feb 2019

Electrically Reversible Magnetization At The Antiperovskite/Perovskite Interface, Ding-Fu Shao, Gautam Gurung, Tula R. Paudel, Evgeny Y. Tsymbal

Evgeny Tsymbal Publications

Using density-functional calculations, we predict the emergence of electrically reversible magnetization at the interface between antiferromagnetic noncollinear antiperovskite GaNMn3 and ferroelectric perovskite BaTiO3. We find that Mn magnetic moments are enhanced and reoriented at the GaNMn3/ATiO3 (001) (A = Sr and Ba) interface, resulting in a sizable net magnetization along the [110] direction. This magnetization is reversed with ferroelectric polarization of BaTiO3 through ∼20◦ rotation of the noncollinear magnetic moments. The effect is driven by ferroelectric modulation of the antiferromagnetic exchange coupling between the interfacial Mn atoms mediated by the Mn-3d orbital population. Our results open opportunities for controlling the …