Open Access. Powered by Scholars. Published by Universities.®

Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 10 of 10

Full-Text Articles in Physics

Acoustically Levitated Whispering-Gallery Mode Microlasers, H. M. Reynoso-De La Cruz, E. D. Hernández-Campos, E. Ortiz-Ricardo, A. Martínez-Borquez, I. Rosas-Román, V. Contreras, G. Ramos-Ortiz, B. Mendoza-Santoyo, Cecilia Zurita-Lopez, R. Castro-Beltrán Nov 2023

Acoustically Levitated Whispering-Gallery Mode Microlasers, H. M. Reynoso-De La Cruz, E. D. Hernández-Campos, E. Ortiz-Ricardo, A. Martínez-Borquez, I. Rosas-Román, V. Contreras, G. Ramos-Ortiz, B. Mendoza-Santoyo, Cecilia Zurita-Lopez, R. Castro-Beltrán

Biology, Chemistry, and Environmental Sciences Faculty Articles and Research

Acoustic levitation has become a crucial technique for contactless manipulation in several fields, particularly in biological applications. However, its application in the photonics field remains largely unexplored. In this study, we implement an affordable and innovative phased-array levitator that enables stable trapping in the air of micrometer dye-doped droplets, thereby enabling the creation of microlasers. For the first time, this paper presents a detailed performance of the levitated microlaser cavity, supported by theoretical analysis concerning the hybrid technology based on the combination of whispering-gallery modes and acoustic fields. The pressure field distribution inside the acoustic cavity is numerically solved and …


Atom-Specific Probing Of Electron Dynamics In An Atomic Adsorbate By Time-Resolved X-Ray Spectroscopy, Simon Schreck, Elias Diesen, Martina Dell'angela, Chang Liu, Matthew Weston, Flavio Capotondi, Hirohito Ogasawara, Jerry Larue, Roberto Costantini, Martin Beye, Piter S. Miedema, Joakim Halldin Stenlid, Jörgen Gladh, Boyang Liu, Hsin-Yi Wang, Fivos Perakis, Filippo Cavalca, Sergey Koroidov, Peter Amann, Emanuele Pedersoli, Denys Naumenko, Ivaylo Nikolov, Lorenzo Raimondi, Frank Abild-Pedersen, Tony F. Heinz, Johannes Voss, Alan C. Luntz, Anders Nilsson Dec 2022

Atom-Specific Probing Of Electron Dynamics In An Atomic Adsorbate By Time-Resolved X-Ray Spectroscopy, Simon Schreck, Elias Diesen, Martina Dell'angela, Chang Liu, Matthew Weston, Flavio Capotondi, Hirohito Ogasawara, Jerry Larue, Roberto Costantini, Martin Beye, Piter S. Miedema, Joakim Halldin Stenlid, Jörgen Gladh, Boyang Liu, Hsin-Yi Wang, Fivos Perakis, Filippo Cavalca, Sergey Koroidov, Peter Amann, Emanuele Pedersoli, Denys Naumenko, Ivaylo Nikolov, Lorenzo Raimondi, Frank Abild-Pedersen, Tony F. Heinz, Johannes Voss, Alan C. Luntz, Anders Nilsson

Biology, Chemistry, and Environmental Sciences Faculty Articles and Research

The electronic excitation occurring on adsorbates at ultrafast timescales from optical lasers that initiate surface chemical reactions is still an open question. Here, we report the ultrafast temporal evolution of x-ray absorption spectroscopy (XAS) and x-ray emission spectroscopy (XES) of a simple well-known adsorbate prototype system, namely carbon (C) atoms adsorbed on a nickel [Ni(100)] surface, following intense laser optical pumping at 400 nm. We observe ultrafast (∼100  fs) changes in both XAS and XES showing clear signatures of the formation of a hot electron-hole pair distribution on the adsorbate. This is followed by slower changes on a few picoseconds …


Retention Of Rising Oil Droplets In Density Stratification, Tracy L. Mandel, De Zhen Zhou, Lindsay Waldrop, Maxime Theillard, Dustin Kleckner, Shilpa Khatri Dec 2020

Retention Of Rising Oil Droplets In Density Stratification, Tracy L. Mandel, De Zhen Zhou, Lindsay Waldrop, Maxime Theillard, Dustin Kleckner, Shilpa Khatri

Biology, Chemistry, and Environmental Sciences Faculty Articles and Research

In this study, we present results from experiments on the retention of single oil droplets rising through a two-layer density stratification, with the goal of quantifying and parametrizing the impact of stratification on timescales that describe the delay in rising. These experiments confirm the significant slowdown observed in past literature of settling and rising particles and droplets in stratification, and these are the first experiments to study single liquid droplets as opposed to solid particles or bubbles. By tracking the motion of the droplets as they rise through a stratified fluid, we identify two new timescales which quantitatively describe this …


Influence Of Microgel Packing On Raspberry-Like Heteroaggregate Assembly, Shalini Saxena, L. Andrew Lyon Mar 2015

Influence Of Microgel Packing On Raspberry-Like Heteroaggregate Assembly, Shalini Saxena, L. Andrew Lyon

Biology, Chemistry, and Environmental Sciences Faculty Articles and Research

We describe the influence of microgel packing on colloidal-phase mediated heteroaggregation using poly(N-isopropylacrylamide) and poly(N-isopropylmethacrylamide) microgels with 1% mol or 5% mol N,N’-methylenebis(acrylamide) cross-linker. This system is uniquely designed to interrogate the influence of microgel structure and stiffness on microgel deformation at a curved interface by elminating the necessity of electrostatic charge pairing. Microgel monomer and cross-linker content is expected to influence deformation at a curved interface. Microgel deformation and swelling were characterized via atomic force microscopy (AFM) and viscometry. A systematic study of colloidal-phase heteroaggregation was performed at varied effective volume fractions with all …


Probing The Transition State Region In Catalytic Co Oxidation On Ru, H. Öström, H. Öberg, H. Xin, Jerry L. Larue, M. Beye, M. Dell'angela, J. Gladh, M. L. Ng, J. A. Sellberg, S. Kaya, G. Mercurio, D. Nordlund, M. Hantschmann, F. Hieke, D. Kühn, W. F. Schlotter, G. L. Dakovski, J. J. Turner, M. P. Minitti, A. Mitra, S. P. Moeller, A. Föhlisch, M. Wolf, W. Wurth, M. Persson, J. K. Nørskov, F. Abild-Pedersen, H. Ogasawara, L. G. M. Pettersson, A. Nilsson Feb 2015

Probing The Transition State Region In Catalytic Co Oxidation On Ru, H. Öström, H. Öberg, H. Xin, Jerry L. Larue, M. Beye, M. Dell'angela, J. Gladh, M. L. Ng, J. A. Sellberg, S. Kaya, G. Mercurio, D. Nordlund, M. Hantschmann, F. Hieke, D. Kühn, W. F. Schlotter, G. L. Dakovski, J. J. Turner, M. P. Minitti, A. Mitra, S. P. Moeller, A. Föhlisch, M. Wolf, W. Wurth, M. Persson, J. K. Nørskov, F. Abild-Pedersen, H. Ogasawara, L. G. M. Pettersson, A. Nilsson

Biology, Chemistry, and Environmental Sciences Faculty Articles and Research

Femtosecond x-ray laser pulses are used to probe the CO oxidation reaction on Ru initiated by an optical laser pulse. On a timescale of a few hundred femtoseconds, the optical laser pulse excites motions of CO and O on the surface allowing the reactants to collide and, with a transient close to a picosecond (ps), new electronic states appear in the O K-edge x-ray absorption spectrum. Density functional theory calculations indicate that these result from changes in the adsorption site and bond-formation between CO and O with a distribution of OC—O bond lengths close to the transition state (TS). After …


Communication: Bubbles, Crystals, And Laser-Induced Nucleation, Brandon C. Knott, Jerry L. Larue, Alec M. Wodtke, Michael F. Doherty, Baron Peters May 2011

Communication: Bubbles, Crystals, And Laser-Induced Nucleation, Brandon C. Knott, Jerry L. Larue, Alec M. Wodtke, Michael F. Doherty, Baron Peters

Biology, Chemistry, and Environmental Sciences Faculty Articles and Research

Short intense laser pulses of visible and infrared light can dramatically accelerate crystal nucleation from transparent solutions; previous studies invoke mechanisms that are only applicable for nucleation of ordered phases or high dielectric phases. However, we show that similar laser pulses induce CO2bubblenucleation in carbonated water. Additionally, in water that is cosupersaturated with argon and glycine, argon bubbles escaping from the water can induce crystal nucleation without a laser. Our findings suggest a possible link between laser-induced nucleation of bubbles and crystals.


Synthesis And Physicochemical Properties Of Cationic Microgels Based On Poly(N-Isopropylmethacrylamide), Xiaobo Hu, Zhen Tong, L. Andrew Lyon Jan 2011

Synthesis And Physicochemical Properties Of Cationic Microgels Based On Poly(N-Isopropylmethacrylamide), Xiaobo Hu, Zhen Tong, L. Andrew Lyon

Biology, Chemistry, and Environmental Sciences Faculty Articles and Research

Surfactant-free, radical precipitation copolymerization of N-isopropylmethacrylamide and the cationic co-monomer N-(3-aminopropyl) methacrylamide hydrochloride (APMH) was carried out to prepare microgels functionalized with primary amines. The morphology and hydrodynamic diameter of the microgels were characterized by atomic force microscopy and photon correlation spectroscopy, with the effect of NaCl concentration and initiator type on the microgel size and yield being investigated. When a 2,2'-azobis (2-amidinopropane) dihydrochloride (V50)-initiated reaction was carried out in pure water, relatively small microgels (similar to 160 nm in diameter) were obtained in low yield (similar to 20%). However, both the yield and size increased if the reaction was …


Site-Specific Photocatalytic Splitting Of Methanol On Tio2(110), Chuanyao Zhou, Zefeng Ren, Shijing Tan, Zhibo Ma, Xinchun Mao, Dongxu Dai, Hongjun Fan, Xueming Yang, Jerry L. Larue, Russell Cooper, Alec M. Wodtke, Zhou Wang, Zhenyu Li, Bing Wang, Jinlong Yang, Jianguo Hou Sep 2010

Site-Specific Photocatalytic Splitting Of Methanol On Tio2(110), Chuanyao Zhou, Zefeng Ren, Shijing Tan, Zhibo Ma, Xinchun Mao, Dongxu Dai, Hongjun Fan, Xueming Yang, Jerry L. Larue, Russell Cooper, Alec M. Wodtke, Zhou Wang, Zhenyu Li, Bing Wang, Jinlong Yang, Jianguo Hou

Biology, Chemistry, and Environmental Sciences Faculty Articles and Research

Clean hydrogen production is highly desirable for future energy needs, making the understanding of molecular-level phenomena underlying photocatalytic hydrogen production both fundamentally and practically important. Water splitting on pure TiO2 is inefficient, however, adding sacrificial methanol could significantly enhance the photocatalyzed H2 production. Therefore, understanding the photochemistry of methanol on TiO2 at the molecular level could provide important insights to its photocatalytic activity. Here, we report the first clear evidence of photocatalyzed splitting of methanol on TiO2 derived from time-dependent two-photon photoemission (TD-2PPE) results in combination with scanning tunneling microscopy (STM). STM tip induced molecular manipulation …


A Surface Femtosecond Two-Photon Photoemission Spectrometer For Excited Electron Dynamics And Time-Dependent Photochemical Kinetics, Zefeng Ren, Chuanyao Zhou, Zhibo Ma, Chun-Lei Xhao, Xinchun Mao, Dongxu Dai, Jerry L. Larue, Russell Cooper, Alec M. Wodtke, Xueming Yang Jun 2010

A Surface Femtosecond Two-Photon Photoemission Spectrometer For Excited Electron Dynamics And Time-Dependent Photochemical Kinetics, Zefeng Ren, Chuanyao Zhou, Zhibo Ma, Chun-Lei Xhao, Xinchun Mao, Dongxu Dai, Jerry L. Larue, Russell Cooper, Alec M. Wodtke, Xueming Yang

Biology, Chemistry, and Environmental Sciences Faculty Articles and Research

A surface femtosecond two-photon photoemission (2PPE) spectrometer devoted to the study of ultrafast excited electron dynamics and photochemical kinetics on metal and metal oxide surfaces has been constructed. Low energy photoelectrons are measured using a hemispheri- cal electron energy analyzer with an imaging detector that allows us to detect the energy and the angular distributions of the photoelectrons simultaneously. A Mach-Zehnder interferom- eter was built for the time-resolved 2PPE (TR-2PPE) measurement to study ultrafast surface excited electron dynamics, which was demonstrated on the Cu(111) surface. A scheme for measuring time-dependent 2PPE (TD-2PPE) spectra has also been developed for studies of …


Inverse Velocity Dependence Of Vibrationally Promoted Electron Emission From A Metal Surface, N. H. Nahler, J. D. White, Jerry L. Larue, Daniel J. Auerbach, Alec M. Wodtke Aug 2008

Inverse Velocity Dependence Of Vibrationally Promoted Electron Emission From A Metal Surface, N. H. Nahler, J. D. White, Jerry L. Larue, Daniel J. Auerbach, Alec M. Wodtke

Biology, Chemistry, and Environmental Sciences Faculty Articles and Research

All previous experimental and theoretical studies of molecular interactions at metal surfaces show that electronically nonadiabatic influences increase with molecular velocity. We report the observation of a nonadiabatic electronic effect that follows the opposite trend: The probability of electron emission from a low–work function surface—Au(111) capped by half a monolayer of Cs—increases as the velocity of the incident NO molecule decreases during collisions with highly vibrationally excited NO(X2π½, V = 18; V is the vibrational quantum number of NO), reaching 0.1 at the lowest velocity studied. We show that these results are consistent with a vibrational …