Open Access. Powered by Scholars. Published by Universities.®

Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 11 of 11

Full-Text Articles in Physics

Midlatitude Mesospheric Temperature Anomalies During Major Ssw Events As Observed With Rayleigh-Scatter Lidar, Leda Sox, Vincent B. Wickwar, Chad Fish, Joshua P. Herron Jun 2014

Midlatitude Mesospheric Temperature Anomalies During Major Ssw Events As Observed With Rayleigh-Scatter Lidar, Leda Sox, Vincent B. Wickwar, Chad Fish, Joshua P. Herron

Graduate Student Posters

While the mesospheric temperature anomalies associated with Sudden Stratospheric Warmings (SSWs) have been observed extensively in the polar regions, observations of these anomalies at midlatitudes are sparse. The original Rayleigh-scatter lidar that operated at the Atmospheric Lidar Observatory (ALO; 41.7°N, 111.8°W) in the Center for Atmospheric and Space Sciences (CASS) on the campus of Utah State University (USU) collected a very dense set of temperature data for 11 years, from 1993 through 2004. The temperatures derived from these data extended over the mesosphere, from 45 to 90 km. This work focuses on the extensive Rayleigh lidar observations made during seven …


Mid-Latiude Rayleigh-Mie-Raman Lidar For Observations From 15 To 120 Km, Vincent B. Wickwar, Leda Sox, Joshua P. Herron, Matthew T. Emerick Dec 2013

Mid-Latiude Rayleigh-Mie-Raman Lidar For Observations From 15 To 120 Km, Vincent B. Wickwar, Leda Sox, Joshua P. Herron, Matthew T. Emerick

Posters

Rayleigh lidar opened a portion of the atmosphere, from 30 to 90 km, to ground-based observations. Rayleigh-scatter observations were made at the Atmospheric Lidar Observatory (ALO) at Utah State University (USU) from 1993–2004 between 45 and 90 km. The lidar consisted of a 0.44-m diameter mirror, a frequency-doubled Nd:YAG laser opera'ng at 532-nm at 30- Hz at either 18- or 24-W, giving power- aperture products (PAPs) of 2.7- or 3.6- Wm2, respec'vely, and one detector channel. An example of what was accomplished with this system is shown as part of Fig. 1. The temperature climatology was based on ~5000 hours …


Ground-Based Observations With A Rayleigh-Mie-Raman Lidar From 15-120 Km, Leda Sox, Vincent B. Wickwar, Joshua P. Herron, David L. Barton, Matthew T. Emerick Oct 2013

Ground-Based Observations With A Rayleigh-Mie-Raman Lidar From 15-120 Km, Leda Sox, Vincent B. Wickwar, Joshua P. Herron, David L. Barton, Matthew T. Emerick

Graduate Student Posters

Rayleigh lidar systems have historically made ground-based observations of the upper atmosphere (stratosphere and mesosphere) from 35-90 km. This technology has helped fill the data collection gap between the troposphere and space. Recently our Rayleigh lidar group at the Atmospheric Lidar Observatory on the campus of Utah State University (42° N, 112° W) upgraded the original lidar system in order to extend the measurement range for neutral densities and temperatures to higher altitudes and has increased the upper limit, so far, from 90 to 110 km. Next, we will extend the lower altitude limit downward to 15 km. This will …


Rayleigh Lidar Observations Of The Mid-Latitude Mesosphere During Stratospheric Warming Events And A New Rayleigh-Mie-Raman Lidar At Usu, Leda Sox, Vincent B. Wickwar, Chad Fish, Joshua P. Herron, Matthew T. Emerick Sep 2013

Rayleigh Lidar Observations Of The Mid-Latitude Mesosphere During Stratospheric Warming Events And A New Rayleigh-Mie-Raman Lidar At Usu, Leda Sox, Vincent B. Wickwar, Chad Fish, Joshua P. Herron, Matthew T. Emerick

Presentations

No abstract provided.


Mesospheric Density Climatologies Determined At Midlatitudes Using Rayleigh Lidar, David L. Barton, Vincent B. Wickwar, Leda Sox, Joshua P. Herron Aug 2013

Mesospheric Density Climatologies Determined At Midlatitudes Using Rayleigh Lidar, David L. Barton, Vincent B. Wickwar, Leda Sox, Joshua P. Herron

Posters

The original Rayleigh-scatter lidar that operated at the Atmospheric Lidar Observatory (ALO; 41.7°N, 111.8°W) in the Center for Atmospheric and Space Sciences (CASS) on the campus of Utah State University (USU), collected 11 years of data between 1993 and 2004. From Rayleigh lidar photon-count returns, relative densities throughout the mesosphere, from 45 to 90 km, were determined. Using these relative densities, three climatologies are derived, each using a different density normalization method at 45 km: the first method normalized the relative densities to a constant; the second normalized them to the NRLMSISe00 empirical model; and the third normalized them to …


Midlatitude, Rayleigh-Mie-Raman Lidar For Observations From 15 To 120 Km, Vincent B. Wickwar, Leda Sox, Joshua P. Herron, Matthew T. Emerick Aug 2013

Midlatitude, Rayleigh-Mie-Raman Lidar For Observations From 15 To 120 Km, Vincent B. Wickwar, Leda Sox, Joshua P. Herron, Matthew T. Emerick

Presentations

No abstract provided.


Wavelength Control For A Potassium Resonance Lidar, Everett E. A., Vincent B. Wickwar Apr 2005

Wavelength Control For A Potassium Resonance Lidar, Everett E. A., Vincent B. Wickwar

Posters

An important ground-based way to measure temperatures and winds in the transition region between the upper mesosphere and lower thermosphere (80 to 105 km) is with a resonance-scatter lidar. An alexandrite laser, with a wavelength in the near infrared at 770 nm, is being added to the Atmospheric Lidar Observatory to make this type of observation of potassium. These observations will complement those that have been made for many years with the green Rayleigh-scatter lidar. For these resonance-scatter observations it is necessary to accurately and precisely control the laser wavelength. The intent is to carefully step across the 4 pm …


Results From The Middle Atmosphere With The Rayleigh-Scatter Lidar At Usu’S Atmospheric Lidar Observatory, Vincent B. Wickwar, Joshua P. Herron, Troy A. Wynn, Eric M. Lundell Aug 2004

Results From The Middle Atmosphere With The Rayleigh-Scatter Lidar At Usu’S Atmospheric Lidar Observatory, Vincent B. Wickwar, Joshua P. Herron, Troy A. Wynn, Eric M. Lundell

Posters

No abstract provided.


Mesospheric Mid-Latitude Density Climatology Above Utah State University, Eric M. Lundell, Vincent B. Wickwar Jun 2004

Mesospheric Mid-Latitude Density Climatology Above Utah State University, Eric M. Lundell, Vincent B. Wickwar

Posters

Lidars have been used extensively to derive temperatures, but not absolute densities, in the mesospheric region of the atmosphere. We used observations since 1993 with the Rayleigh- scatter lidar at the Atmospheric Lidar Observatory (ALO) at Utah State University (41.7oN, 111.8oW) to create an absolute density climatology between 45 and ~95 km. The observations provide profiles of relative density to which an absolute scale is attached by normalizing the profiles at 45 km to the densities in the MSISe00 empirical model. We examine the density variations on several time scales—during the climatological year, from year to year, and over several …


Mesospheric Temperature Climatology Above Utah State University, Joshua P. Herron Jan 2004

Mesospheric Temperature Climatology Above Utah State University, Joshua P. Herron

Physics

A Rayleigh-scatter lidar has been in operation at Utah State University (41.7o N, 111.8 ° W) starting in September 1993 until the present (October 2003). The return profiles from the atmosphere have been analyzed to provide temperature measurements of the middle atmosphere from 45 to 90 km. Various methods of averaging were used to construct a temperature climatology of the region based on these observations. The data analysis algorithm has been critically analyzed to find possible sources of error, and has been compared to an independently derived technique. The resulting temperatures have been compared to other mid-latitude lidars with good …


Visual And Lidar Observations Ofnoctilucent Clouds Above Logan, Utah, At 41.7°N, Vincent B. Wickwar, Michael J. Taylor, Joshua P. Herron, B. A. Martineau Apr 2002

Visual And Lidar Observations Ofnoctilucent Clouds Above Logan, Utah, At 41.7°N, Vincent B. Wickwar, Michael J. Taylor, Joshua P. Herron, B. A. Martineau

All Physics Faculty Publications

Noctilucent clouds (NLCs) were observed from a midlatitude site (Logan, Utah) on the evenings of 22 and 23 June 1999 mountain daylight time. On both nights the clouds were seen for approximately an hour by experienced observers, and they were photographed. The NLC was also observed on the second evening for approximately an hour in the zenith with the Rayleigh-scatter lidar at the Atmospheric Lidar Observatory, which is operated by the Center for Atmospheric and Space Sciences on the campus of Utah State University. These observations enabled several of the properties of the cloud to be determined. They were within …