Open Access. Powered by Scholars. Published by Universities.®

Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 3 of 3

Full-Text Articles in Physics

Momentum Distributions For 2H (E, E' P), William P. Ford, Sabine Jeschonnek, J. W. Van Orden Dec 2014

Momentum Distributions For 2H (E, E' P), William P. Ford, Sabine Jeschonnek, J. W. Van Orden

Faculty Publications

Background: A primary goal of deuteron electrodisintegration is the possibility of extracting the deuteron momentum distribution. This extraction is inherently fraught with difficulty, as the momentum distribution is not an observable and the extraction relies on theoretical models dependent on other models as input.

Purpose: We present a new method for extracting the momentum distribution which takes into account a wide variety of model inputs thus providing a theoretical uncertainty due to the various model constituents. To test the extraction, pseudodata were generated, and the extracted “experimental” distribution, which has theoretical uncertainty accounted by this extraction method, can be compared …


Elastic Differential Cross Sections For Space Radiation Applications, Charles M. Werneth, Khin M. Maung, William P. Ford, John W. Norbury, Michael D. Vera Dec 2014

Elastic Differential Cross Sections For Space Radiation Applications, Charles M. Werneth, Khin M. Maung, William P. Ford, John W. Norbury, Michael D. Vera

Faculty Publications

The eikonal, partial wave (PW) Lippmann-Schwinger, and three-dimensional Lippmann-Schwinger (LS3D) methods are compared for nuclear reactions that are relevant for space radiation applications. Numerical convergence of the eikonal method is readily achieved when exact formulas of the optical potential are used for light nuclei (>A≤>16), and the momentum-space representation of the optical potential is used for heavier nuclei. The PW solution method is known to be numerically unstable for systems that require a large number of partial waves, and, as a result, the LS3D method is employed. The effect of relativistic kinematics is studied with the PW and …


Binding Of Solvated Peptide (Eplqlkm) With A Graphene Sheet Via Simulated Coarse-Grained Approach, Somayyeh Sheikholeslami, R. B. Pandey, Nadiya Dragneva, Wely Floriano, Oleg Rubel, Stephen A. Barr, Zhifeng Kuang, Rajiv Berry, Rajesh Naik, Barry Farmer May 2014

Binding Of Solvated Peptide (Eplqlkm) With A Graphene Sheet Via Simulated Coarse-Grained Approach, Somayyeh Sheikholeslami, R. B. Pandey, Nadiya Dragneva, Wely Floriano, Oleg Rubel, Stephen A. Barr, Zhifeng Kuang, Rajiv Berry, Rajesh Naik, Barry Farmer

Faculty Publications

Binding of a solvated peptide A1 (1E 2P 3L 4Q 5L 6K 7M) with a graphene sheet is studied by a coarse-grained computer simulation involving input from three independent simulated interaction potentials in hierarchy. A number of local and global physical quantities such as energy, mobility, and binding profiles and radius of gyration of peptides are examined as a function of temperature (T). Quantitative differences (e.g., the extent of binding within a temperature range) and qualitative similarities are observed in results from three simulated potentials. Differences in variations of both local and …