Open Access. Powered by Scholars. Published by Universities.®

Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 4 of 4

Full-Text Articles in Physics

Optical Transmission Measurements Of Explosive Boiling And Liftoff Of A Layer Of Micron-Scale Water Droplets From A Krf Laser-Heated Si Substrate, Sergey I. Kudryashov, Susan D. Allen Jun 2019

Optical Transmission Measurements Of Explosive Boiling And Liftoff Of A Layer Of Micron-Scale Water Droplets From A Krf Laser-Heated Si Substrate, Sergey I. Kudryashov, Susan D. Allen

Susan D. Allen

Water plume velocities were measured in air by optical transmission as a function of laser fluence using a KrF laser for explosive boiling and liftoff of a layer of micron-scale waterdroplets from a laser-heated Si substrate of interest for laser particle removal. The thickness of the superheated water layer near the water/Si interface determines acceleration and removal of the waterdroplets from the Si substrate.

© 2003 American Institute of Physics


Applications Of High Throughput (Combinatorial) Methodologies To Electronic, Magnetic, Optical, And Energy-Related Materials, Martin L. Green, Ichiro Takeuchi, Jason R. Hattrick-Simpers Mar 2015

Applications Of High Throughput (Combinatorial) Methodologies To Electronic, Magnetic, Optical, And Energy-Related Materials, Martin L. Green, Ichiro Takeuchi, Jason R. Hattrick-Simpers

Jason R. Hattrick-Simpers

High throughput (combinatorial) materials science methodology is a relatively new research paradigm that offers the promise of rapid and efficient materials screening, optimization, and discovery. The paradigm started in the pharmaceutical industry but was rapidly adopted to accelerate materials research in a wide variety of areas. High throughput experiments are characterized by synthesis of a “library” sample that contains the materials variation of interest (typically composition), and rapid and localized measurement schemes that result in massive data sets. Because the data are collected at the same time on the same “library” sample, they can be highly uniform with respect to …


Fabrication Of Robust Superconducting Granular Aluminium/Palladium Bilayer Microbolometers With Sub-Nanosecond Response, Thomas E. Wilson Feb 2014

Fabrication Of Robust Superconducting Granular Aluminium/Palladium Bilayer Microbolometers With Sub-Nanosecond Response, Thomas E. Wilson

Thomas E. Wilson

We provide a convenient recipe for fabricating reliable superconducting microbolometers as acoustic phonon detectors with sub-nanosecond response, using imagereversal optical lithography and dc-magnetron sputtering, and our recipe requires no chemical or plasma etching. Our approach solves the traditional problem for granular aluminium bolometers of unreliable (i.e., non-Ohmic) electrical contacts by sequentially sputtering the granular aluminium film and then a palladium capping layer. We use dc calibration data, the method of Danilchenko et al. [1], and direct nanosecond-pulsed photoexcitation to obtain the microbolometer’s characteristic current, thermal conductance, characteristic relaxation time, and heat capacity. We also demonstrate the use of the deconvolution …


Piezomagnetism In Epitaxial Cr2o3 Thin Films And Spintronic Applications, Sarbeswar Sahoo, Christian Binek Mar 2012

Piezomagnetism In Epitaxial Cr2o3 Thin Films And Spintronic Applications, Sarbeswar Sahoo, Christian Binek

Christian Binek

Stress-induced perturbation of the antiferromagnetic long-range order in epitaxially grown Cr2O3 thin films gives rise to pronounced piezomagnetism and a significant reduction of the antiferromagnetic ordering temperature. The temperature dependence of the piezomagnetic moment measured by superconducting quantum interference device magnetometry reveals a power law behaviour with a critical exponent 2B=0.66 in accordance with the Ising anisotropy of a three-dimensional system. The observed shift of the Neel temperature allows estimating the internal lateral stress which is in excellent agreement with an independent estimate based on the elastic properties of Cr2O3 and the lattice mismatch at the interface between the sapphire …