Open Access. Powered by Scholars. Published by Universities.®

Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

PDF

Portland State University

Series

Crystallography

Articles 1 - 7 of 7

Full-Text Articles in Physics

On Classification Approaches For Crystallographic Symmetries Of Noisy 2d Periodic Patterns, Peter Moeck May 2019

On Classification Approaches For Crystallographic Symmetries Of Noisy 2d Periodic Patterns, Peter Moeck

Physics Faculty Publications and Presentations

The existing types of classification approaches for the crystallographic symmetries of patterns that are more or less periodic in two dimensions (2D) are reviewed. Their relative performance is evaluated in a qualitative manner. Pseudo-symmetries of different kinds are discussed as they present severe challenges to most classification approaches when noise levels are moderate to high. The author’s information theory based approaches utilize digital images and geometric Akaike Information Criteria. They perform well in the presence of pseudo-symmetries and turn out to be the only ones that allow for fully objective (completely researcher independent) and generalized noise level dependent classifications of …


Towards Generalized Noise-Level Dependent Crystallographic Symmetry Classifications Of More Or Less Periodic Crystal Patterns, Peter Moeck Apr 2018

Towards Generalized Noise-Level Dependent Crystallographic Symmetry Classifications Of More Or Less Periodic Crystal Patterns, Peter Moeck

Physics Faculty Publications and Presentations

Geometric Akaike Information Criteria (G-AICs) for generalized noise-level dependent crystallographic symmetry classifications of two-dimensional (2D) images that are more or less periodic in either two or one dimensions as well as Akaike weights for multi-model inferences and predictions are reviewed. Such novel classifications do not refer to a single crystallographic symmetry class exclusively in a qualitative and definitive way. Instead, they are quantitative, spread over a range of crystallographic symmetry classes, and provide opportunities for inferences from all classes (within the range) simultaneously. The novel classifications are based on information theory and depend only on information that has been extracted …


Accurate Lattice Parameters From 2d-Periodic Images For Subsequent Bravais Lattice Type Assignments, Peter Moeck, Paul R. Destefano Jan 2018

Accurate Lattice Parameters From 2d-Periodic Images For Subsequent Bravais Lattice Type Assignments, Peter Moeck, Paul R. Destefano

Physics Faculty Publications and Presentations

Three different algorithms, as implemented in three different computer programs, were put to the task of extracting direct space lattice parameters from four sets of synthetic images that were per design more or less periodic in two dimensions (2D). One of the test images in each set was per design free of noise and, therefore, genuinely 2D periodic so that it adhered perfectly to the constraints of a Bravais lattice type, Laue class, and plane symmetry group. Gaussian noise with a mean of zero and standard deviations of 10 and 50% of the maximal pixel intensity was added to the …


Removal Of Multiple-Tip Artifacts From Scanning Tunneling Microscope Images By Crystallographic Averaging, Jack C. Straton, Bill Moon, Taylor T. Bilyeu, Peter Moeck Nov 2015

Removal Of Multiple-Tip Artifacts From Scanning Tunneling Microscope Images By Crystallographic Averaging, Jack C. Straton, Bill Moon, Taylor T. Bilyeu, Peter Moeck

Physics Faculty Publications and Presentations

Crystallographic image processing (CIP) techniques may be utilized in scanning probe microscopy (SPM) to glean information that has been obscured by signals from multiple probe tips. This may be of particular importance for scanning tunneling microscopy (STM) and requires images from samples that are periodic in two dimensions (2D). The image-forming current for double-tips in STM is derived with a slight modification of the independent-orbital approximation (IOA) to allow for two or more tips. Our analysis clarifies why crystallographic averaging works well in removing the effects of a blunt STM tip (that consists of multiple mini-tips) from recorded 2D periodic …


Advances In Crystallographic Image Processing For Scanning Probe Microscopy, Peter Moeck, Taylor T. Bilyeu, A. Mainzer Koenig, Jack C. Straton Jan 2014

Advances In Crystallographic Image Processing For Scanning Probe Microscopy, Peter Moeck, Taylor T. Bilyeu, A. Mainzer Koenig, Jack C. Straton

Physics Faculty Publications and Presentations

Brief overview of advances in image processing for scanning probe microscopes, as related to high resolution images of crystals and arrays of membrane proteins.


Crystallite Phase And Orientation Determinations Of (Mn, Ga) As/Gaas-Crystallites Using Analyzed (Precession) Electron Diffraction Patterns, Ines Häusler, Stavros Nicolopoulos, Edgar F. Rauch, K. Volz, Peter Moeck Jan 2011

Crystallite Phase And Orientation Determinations Of (Mn, Ga) As/Gaas-Crystallites Using Analyzed (Precession) Electron Diffraction Patterns, Ines Häusler, Stavros Nicolopoulos, Edgar F. Rauch, K. Volz, Peter Moeck

Physics Faculty Publications and Presentations

Outline of the presentation:

1. Material system: (Mn,Ga)As/GaAs-crystallites

2. Structure analysis using Nano-beam Diffraction (NBD) Precession Electron Diffraction Technique (PED) --> Structure type I + II

3. Phase and orientation mapping using ASTAR

4. Conclusion


Precession Electron Diffraction And Its Advantages For Structural Fingerprinting In The Transmission Electron Microscope, Peter Moeck, Sergei Rouvimov Jan 2009

Precession Electron Diffraction And Its Advantages For Structural Fingerprinting In The Transmission Electron Microscope, Peter Moeck, Sergei Rouvimov

Physics Faculty Publications and Presentations

The foundations of precession electron diffraction in a transmission electron microscope are outlined. A brief illustration of the fact that laboratory-based powder X-ray diffraction fingerprinting is not feasible for nanocrystals is given. A procedure for structural fingerprinting of nanocrystals on the basis of structural data that can be extracted from precession electron diffraction spot patterns is proposed.