Open Access. Powered by Scholars. Published by Universities.®

Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

PDF

Portland State University

Physics Faculty Publications and Presentations

Series

Nanoparticles

Articles 1 - 7 of 7

Full-Text Articles in Physics

Photoemission Electron Microscopy To Characterize Slow Light In A Photonic Crystal Line Defect, Theodore Stedmark, Rolf Könenkamp Jan 2019

Photoemission Electron Microscopy To Characterize Slow Light In A Photonic Crystal Line Defect, Theodore Stedmark, Rolf Könenkamp

Physics Faculty Publications and Presentations

Using femtosecond nonlinear photoemission electron microscopy (PEEM) we provide a detailed characterization of slow light in a small-size asymmetric photonic crystal structure. We show that PEEM is capable of providing a unique description of the light propagation in such structures by direct imaging of the guided mode. This noninvasive characterization technique allows modal properties such as effective index, phase velocities, and group velocities to be determined. Combining experimental results with finite element method simulation calculations, we study slow light phenomena in a photonic crystal defect mode, and we produce a comprehensive picture of the mechanisms behind it. Our results illustrate …


Structural Instability And Dynamic Emission Fluctuations In Zinc Oxide Random Lasers, Zachariah Peterson, Robert Campbell Word, Rolf Könenkamp Aug 2018

Structural Instability And Dynamic Emission Fluctuations In Zinc Oxide Random Lasers, Zachariah Peterson, Robert Campbell Word, Rolf Könenkamp

Physics Faculty Publications and Presentations

We report experimental results on the structural stability of optically pumped zinc oxide random lasers. We find that the lasing threshold is not entirely stable and depends on the accumulated light exposure received in pulsed optical pumping. We show that exposure levels below ∼1.5 kJ/cm2 improve the lasing efficiency and lower the lasing threshold. Beyond that value, however, lasing efficiency and threshold begin to degrade. Electron microscopy shows that the degradation is accompanied by morphological changes characteristic of melting. These changes become visible at an exposure of ∼0.7 kJ/cm2. We suggest that the melting is initially localized within nanometer areas …


Confined Photonic Mode Propagation Observed In Photoemission Electron Microscopy, Theodore Stenmark, Robert Campbell Word, Rolf Konenkamp Dec 2017

Confined Photonic Mode Propagation Observed In Photoemission Electron Microscopy, Theodore Stenmark, Robert Campbell Word, Rolf Konenkamp

Physics Faculty Publications and Presentations

Using photoemission electron microscopy (PEEM) we present a comparative analysis of the wavelength dependence of propagating fields in a simple optical slab waveguide and a thin film photonic crystal W1-type waveguide. We utilize an interferometric imaging approach for light in the near-ultraviolet regime where a 2-photon process is required to produce photoelectron emission. The typical spatial resolution in these experiments is < 30 nm. Electromagnetic theory and finite element simulations are shown to be in good agreement with the experimental observations. Our results indicate that multiphoton PEEM is a useful sub-wavelength characterization technique in thin film optics.


Ion Transport Across Biological Membranes By Carborane-Capped Gold Nanoparticles, Marcin P. Grzelczak, Stephen P. Danks, Robert C. Klipp, Domagoj Belic, Adnana Zaulet, Casper Kunstmann-Olsen, Dan F. Bradley, Tatsuya Tsukuda, Clara ViñAs, Francesc Teixidor, Jonathan J. Abramson, Mathias Brust Nov 2017

Ion Transport Across Biological Membranes By Carborane-Capped Gold Nanoparticles, Marcin P. Grzelczak, Stephen P. Danks, Robert C. Klipp, Domagoj Belic, Adnana Zaulet, Casper Kunstmann-Olsen, Dan F. Bradley, Tatsuya Tsukuda, Clara ViñAs, Francesc Teixidor, Jonathan J. Abramson, Mathias Brust

Physics Faculty Publications and Presentations

Carborane-capped gold nanoparticles (Au/carborane NPs, 2–3 nm) can act as artificial ion transporters across biological membranes. The particles themselves are large hydrophobic anions that have the ability to disperse in aqueous media and to partition over both sides of a phospholipid bilayer membrane. Their presence therefore causes a membrane potential that is determined by the relative concentrations of particles on each side of the membrane according to the Nernst equation. The particles tend to adsorb to both sides of the membrane and can flip across if changes in membrane potential require their repartitioning. Such changes can be made either with …


Effects Of Extraneous Surface Charges On The Enhanced Raman Scattering From Metallic Nanoparticles, H. Y. Chung, P. T. Leung, D. P. Tsai Jun 2013

Effects Of Extraneous Surface Charges On The Enhanced Raman Scattering From Metallic Nanoparticles, H. Y. Chung, P. T. Leung, D. P. Tsai

Physics Faculty Publications and Presentations

Motivating by recent experiments on surface enhanced Raman scattering (SERS) from colloidal solutions, we present here a simple model to elucidate the effects of extraneous surface charges on the enhanced Raman signal. The model is based on the well-established Gersten-Nitzan model coupled to the modified Mie scattering theory of Bohren and Hunt in the long wavelength approximation. We further introduce corrections from the modified long wavelength approximation to the Gersten-Nitzan model for the improvement of its accuracy. Our results show that the surface charge will generally lead to a blueshift in the resonance frequency and greater enhancements in the SERS …


Decay Rates Of A Molecule In The Vicinity Of A Spherical Surface Of An Isotropic Magnetodielectric Material, H. Y. Chung, P.T. Leung, D. P. Tsai Oct 2012

Decay Rates Of A Molecule In The Vicinity Of A Spherical Surface Of An Isotropic Magnetodielectric Material, H. Y. Chung, P.T. Leung, D. P. Tsai

Physics Faculty Publications and Presentations

A comprehensive study is presented on the decay rates of excited molecules in the vicinity of a magnetodielectric material of spherical geometry via electrodynamic modeling. Both the models based on a driven-damped harmonic oscillator and on energy transfers will be applied so that the total decay rates can be rigorously decomposed into the radiative and the nonradiative rates. Clarifications of the equivalence of these two models for arbitrary geometry will be provided. Different possible orientations and locations of the molecule are studied with the molecule being placed near a spherical particle or a cavity. Among other results, TE modes are …


Plasmonic Enhancement Of Forster Energy Transfer Between Two Molecules In The Vicinity Of A Metallic Nanoparticle: Nonlocal Optical Effects, P.T. Leung, H. Y. Xie, H. Y. Chung, D. P. Tsai Oct 2009

Plasmonic Enhancement Of Forster Energy Transfer Between Two Molecules In The Vicinity Of A Metallic Nanoparticle: Nonlocal Optical Effects, P.T. Leung, H. Y. Xie, H. Y. Chung, D. P. Tsai

Physics Faculty Publications and Presentations

The problem of Forster resonance energy transfer (FRET) between two molecules in the vicinity of a metallic nanoparticle such as a nanoshell is studied within a phenomenological model which takes into account the nonlocal optical response of the metal. This model allows for arbitrary locations and orientations of the two molecular dipoles with respect to the metal particle which can be of ultrasmall sizes (nm) and for which nonlocal effects are of high significance. In particular, for the nanoshell case, the molecules can be located both outside, both inside, or one inside and one outside the shell. Also, the case …