Open Access. Powered by Scholars. Published by Universities.®

Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 7 of 7

Full-Text Articles in Physics

Argon Metastable And Resonant Level Densities In Ar And Ar/Cl² Discharges Used For The Processing Of Bulk Niobium, Jeremy Peshl, Roderick Mcneill, Charles I. Sukenik, Milka Nikolić, Svetozar Popović, Leposava Vŭsković Jan 2019

Argon Metastable And Resonant Level Densities In Ar And Ar/Cl² Discharges Used For The Processing Of Bulk Niobium, Jeremy Peshl, Roderick Mcneill, Charles I. Sukenik, Milka Nikolić, Svetozar Popović, Leposava Vŭsković

Physics Faculty Publications

A comparative analysis of two popular spectroscopy techniques is conducted in a coaxial cylindrical capacitively coupled discharge designed for the plasma processing of superconducting radio frequency (SRF) cavities. The density of the metastable and resonant levels in Ar is measured in both Ar and Ar/Cl2 discharges to properly characterize the unique discharge system and aid in the development of a cavity etching routine. The first method, deemed the “branching fraction method,” utilizes the sensitivity of photon reabsorption of radiative decay to measure the lower state (metastable and resonant) densities by taking ratios of spectral lines with a common upper …


Generation Of Large-Volume Diffuse Plasma By An External Ionization Wave From A Single-Electrode Plasma Jet, Seyed Hamid Razavi Barzoki Jul 2018

Generation Of Large-Volume Diffuse Plasma By An External Ionization Wave From A Single-Electrode Plasma Jet, Seyed Hamid Razavi Barzoki

Electrical & Computer Engineering Theses & Dissertations

A non-thermal transient diffuse plasma can be generated remotely in a nonconductive reduced pressure chamber by an external guided fast ionization wave (FIW). We found that an atmospheric-pressure low-temperature plasma jet (APPJ) can be a source of FIW which transfers an enhanced electric field at the wave front across a reduced pressure Pyrex glass chamber with no electrical connection to the chamber. Here, we studied the formation and propagation of the APPJ plasma, the interaction of atmospheric-pressure guided FIW with a dielectric surface which forms the wall of the reduced-pressure system, and the formation and propagation of the reduce-pressure FIW …


Measurements Of Population Densities Of Metastable And Resonant Levels Of Argon Using Laser Induced Fluorescence, M. Nikolic, J. Newton, C. I. Sukenik, L. Vuskovic, S. Popovic Jan 2015

Measurements Of Population Densities Of Metastable And Resonant Levels Of Argon Using Laser Induced Fluorescence, M. Nikolic, J. Newton, C. I. Sukenik, L. Vuskovic, S. Popovic

Physics Faculty Publications

We present a new approach to measure population densities of Ar I metastable and resonant excited states in low temperature Ar plasmas at pressures higher than 1 Torr. This approach combines the time resolved laser induced fluorescence technique with the kinetic model of Ar. The kinetic model of Ar is based on calculating the population rates of metastable and resonant levels by including contributions from the processes that affect population densities of Ar I excited states. In particular, we included collisional quenching processes between atoms in the ground state and excited states, since we are investigating plasma at higher pressures. …


Experimental Studies On The Plasma Bullet Propagation And Its Inhibition, Erdinc Karakas, Mounir Laroussi Jan 2010

Experimental Studies On The Plasma Bullet Propagation And Its Inhibition, Erdinc Karakas, Mounir Laroussi

Electrical & Computer Engineering Faculty Publications

Plasma bullets generated by atmospheric pressure low temperature plasma jets have recently been an active research topic due to their unique properties and their enhanced plasma chemistry. In this paper, experimental insights into the plasma bullet lifetime and its velocity are reported. Data obtained from intensified charge-coupled device camera and time-resolved optical emission spectroscopy (OES) elucidated the existence of a weakly ionized channel between the plasma bullet and its source (such as the plasma pencil). Factors responsible for the inhibition of the propagation of the bullet, such as low helium mole fraction, the magnitude of the applied voltage, and the …


Dynamics Of An Atmospheric Pressure Plasma Plume Generated By Submicrosecond Voltage Pulses, Xinpei Lu, Mounir Laroussi Jan 2006

Dynamics Of An Atmospheric Pressure Plasma Plume Generated By Submicrosecond Voltage Pulses, Xinpei Lu, Mounir Laroussi

Electrical & Computer Engineering Faculty Publications

Nonequilibrium plasmas driven by submicrosecond high voltage pulses have been proven to produce high-energy electrons, which in turn lead to enhanced ionization and excitations. Here, we describe a device capable of launching a cold plasma plume in the surrounding air. This device, "the plasma pencil," is driven by few hundred nanosecond wide pulses at repetition rates of a few kilohertz. Correlation between current-voltage characteristics and fast photography shows that the plasma plume is in fact a small bulletlike volume of plasma traveling at unusually high velocities. A model based on photoionization is used to explain the propagation kinetics of the …


Electron Heating In Atmospheric Pressure Glow Discharges, Robert H. Stark, Karl H. Schoenbach Jan 2001

Electron Heating In Atmospheric Pressure Glow Discharges, Robert H. Stark, Karl H. Schoenbach

Bioelectrics Publications

The application of nanosecond voltage pulses to weakly ionized atmospheric pressure plasmas allows heating the electrons without considerably increasing the gas temperature, provided that the duration of the pulses is less than the critical time for the development of glow-to-arc transitions. The shift in the electron energy distribution towards higher energies causes a temporary increase in the ionization rate, and consequently a strong rise in electron density. This increase in electron density is reflected in an increased decay time of the plasma after the pulse application. Experiments in atmospheric pressure air glow discharges with gas temperatures of approximately 2000 K …


Measurement Of Magnetic Fluctuations By O-X Mode Conversion, L. L. Vahala, G. Vahala, N. Bretz Jan 1990

Measurement Of Magnetic Fluctuations By O-X Mode Conversion, L. L. Vahala, G. Vahala, N. Bretz

Electrical & Computer Engineering Faculty Publications

The possibility of measuring magnetic fluctuations in a fusion plasma is considered by examining the O→X mode conversion. Under certain conditions and with good angular resolution, this mode conversion can be attributed to the presence of magnetic fluctuations even though the level of these fluctuations is much lower than that of density fluctuations. Some nonideal effects such as mode polarization mismatch at the plasma edge are also discussed.