Open Access. Powered by Scholars. Published by Universities.®

Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

PDF

Old Dominion University

Series

2005

Discipline
Keyword
Publication

Articles 1 - 16 of 16

Full-Text Articles in Physics

Lattice Quantum Algorithm For The Schrodinger Wave Equation In 2+1 Dimensions With A Demonstration By Modeling Soliton Instabilities, Jeffrey Yepez, George Vahala, Linda L. Vahala Dec 2005

Lattice Quantum Algorithm For The Schrodinger Wave Equation In 2+1 Dimensions With A Demonstration By Modeling Soliton Instabilities, Jeffrey Yepez, George Vahala, Linda L. Vahala

Electrical & Computer Engineering Faculty Publications

A lattice-based quantum algorithm is presented to model the non-linear Schrödinger-like equations in 2 + 1 dimensions. In this lattice-based model, using only 2 qubits per node, a sequence of unitary collide (qubit-qubit interaction) and stream (qubit translation) operators locally evolve a discrete field of probability amplitudes that in the long-wavelength limit accurately approximates a non-relativistic scalar wave function. The collision operator locally entangles pairs of qubits followed by a streaming operator that spreads the entanglement throughout the two dimensional lattice. The quantum algorithmic scheme employs a non-linear potential that is proportional to the moduli square of the wave function. …


Alignment Dynamics Of Slow Light Diffusion In Ultracold Atomic 85Rb, S. Balik, R. G. Olave, C. I. Sukenik, M. D. Havey, V. M. Datsyuk, I. M. Sokolov, D. V. Kupriyanov Nov 2005

Alignment Dynamics Of Slow Light Diffusion In Ultracold Atomic 85Rb, S. Balik, R. G. Olave, C. I. Sukenik, M. D. Havey, V. M. Datsyuk, I. M. Sokolov, D. V. Kupriyanov

Physics Faculty Publications

A combined experimental and theoretical investigation of time- and alignment-dependent propagation of light in an ultracold atomic gas of atomic 85Rb is reported. Coherences among the scattering amplitudes for light scattering off excited hyperfine levels produce strong variations of the light polarization in the vicinity of atomic resonance. Measurements are in excellent agreement with Monte Carlo simulations of the multiple scattering process.


Kinetic Structure Simulations Of Nematic Polymers In Plane Couette Cells. Ii: In-Plane Structure Transitions, M. Gregory Forest, Ruhai Zhou, Qi Wang Jan 2005

Kinetic Structure Simulations Of Nematic Polymers In Plane Couette Cells. Ii: In-Plane Structure Transitions, M. Gregory Forest, Ruhai Zhou, Qi Wang

Mathematics & Statistics Faculty Publications

Nematic, or liquid crystalline, polymer (LCP) composites are composed of large aspect ratio rod-like or platelet macromolecules. This class of nanocomposites exhibits tremendous potential for high performance material applications, ranging across mechanical, electrical, piezoelectric, thermal, and barrier properties. Fibers made from nematic polymers have set synthetic materials performance standards for decades. The current target is to engineer multifunctional films and molded parts, for which processing flows are shear-dominated. Nematic polymer films inherit anisotropy from collective orientational distributions of the molecular constituents and develop heterogeneity on length scales that are, as yet, not well understood and thereby uncontrollable. Rigid LCPs in …


Higher Twist Analysis Of The Proton G₁ Structure Function, M. Osipenko, W. Melnitchouk, S. Simula, P. Bosted, V. Burkert, M. E. Christy, K. Griffioen, C. Keppel, S. E. Kuhn Jan 2005

Higher Twist Analysis Of The Proton G₁ Structure Function, M. Osipenko, W. Melnitchouk, S. Simula, P. Bosted, V. Burkert, M. E. Christy, K. Griffioen, C. Keppel, S. E. Kuhn

Physics Faculty Publications

We perform a global analysis of all available spin-dependent proton structure function data, covering a large range of Q2, 1 ⩽ Q2 ⩽ 30 GeV2, and calculate the lowest moment of the g1 structure function as a function of Q2. From the Q2 dependence of the lowest moment we extract matrix elements of twist-4 operators, and determine the color electric and magnetic polarizabilities of the proton to be XE= 0.026 ± 0.015(stat) ± 0.0210.024 (sys) and XB= -0.013 ∓ 0.007(stat) ∓ 0.010 0.012(sys), respectively.


Exclusive Photoproduction Of The Cascade Ξ Hyperons, H. Bagdasaryan, M. Bektasoglu, K. V. Dharmawardane, G. E. Dodge, T. A. Forest, G. Gavalian, N. Guler, C. E. Hyde-Wright, A. V. Klimenko, S. E. Kuhn, L. M. Qin, L. B. Weinstein, J. Yun, Et Al., Clas Collaboration Jan 2005

Exclusive Photoproduction Of The Cascade Ξ Hyperons, H. Bagdasaryan, M. Bektasoglu, K. V. Dharmawardane, G. E. Dodge, T. A. Forest, G. Gavalian, N. Guler, C. E. Hyde-Wright, A. V. Klimenko, S. E. Kuhn, L. M. Qin, L. B. Weinstein, J. Yun, Et Al., Clas Collaboration

Physics Faculty Publications

We report on the first measurement of exclusive Ξ-(1321) hyperon photoproduction in 𝛾p → K+K+Ξ- for 3.2 < E𝛾 < 3.9 GeV. The final state is identified by the missing mass in p(𝛾,K+K+)X measured with the CLAS detector at Jefferson Laboratory. We have detected a significant number of the ground state Ξ-(1321)1/2+ and have estimated the total cross section for its production. We also have strong evidence for the first excited state Ξ-(1530)3/2+. Photoproduction provides a copious source of Ξ's. We discuss the possibilities of a search for the recently proposed Ξ5- and Ξ5+ …


Levitation Using Microwave-Induced Plasmas, R. J. Exton, S. Popovic, G. C. Herring, M. Cooper Jan 2005

Levitation Using Microwave-Induced Plasmas, R. J. Exton, S. Popovic, G. C. Herring, M. Cooper

Physics Faculty Publications

The levitation of objects above a microwave horn is demonstrated. High-power microwave pulses generate a low-temperature, diffuse plasma on the surface of the horn window. The thermal effect of the surface plasma brings about a localized increase in the pressure and results in a vertical flow of air, thus levitating the object.


Cluster Issue On Microplasmas, Kurt H. Becker, J. Gary Eden, Karl H. Schoenbach Jan 2005

Cluster Issue On Microplasmas, Kurt H. Becker, J. Gary Eden, Karl H. Schoenbach

Bioelectrics Publications

Atmospheric-pressure diffuse discharge plasmas are susceptible to instabilities and, in particular, to arcing (the glow-to-arc transition). Some of the most promising approaches to ‘stabilizing’ atmospheric-pressure plasmas are based on the recognition that arc formation can be avoided when the plasmas are generated and maintained in spatially constricted geometries with dimensions from tens to hundreds of microns. Known as microplasmas or microdischarges, these weakly-ionized discharges represent a new and fascinating realm of plasma science in which several scientific issues, such as the potential breakdown of pd scaling and the role of boundary-based phenomena, come to the fore. In contrast to ‘macroplasmas’ …


Predicted Properties Of Microhollow Cathode Discharges In Xenon, J. P. Boeuf, L. C. Pitchford, K. H. Schoenbach Jan 2005

Predicted Properties Of Microhollow Cathode Discharges In Xenon, J. P. Boeuf, L. C. Pitchford, K. H. Schoenbach

Bioelectrics Publications

A fluid model has been developed and used to help clarify the physical mechanisms occurring in microhollow cathode discharges (MHCD). Calculated current-voltage (I-V) characteristics and gas temperatures in xenon at 100 Torr are presented. Consistent with previous experimental results in similar conditions, we find a voltage maximum in the I-V characteristic. We show that this structure reflects a transition between a low-current, abnormal discharge localized inside the cylindrical hollow cathode to a higher-current, normal glow discharge sustained by electron emission from the outer surface of the cathode. This transition, due to the geometry of …


Exclusive Ρ0 Meson Electroproduction From Hydrogen At Clas, C. Hadjidakis, M. Guidal, M. Garçon, J.-M. Laget, E. S. Smith, M. Vanderhaeghen, G. Adams, P. Ambrozewicz, E. Anciant, M. Anghinolfi, H. Bagdasaryan, K. V. Dharmawardane, G. E. Dodge, T. A. Forest, G. Gavalian, M. Guler, C. E. Hyde-Wright, A. Klein, A. V. Klimenko, S. E. Kuhn, R. A. Niyazov, L. M. Qin, F. Sabatie, L. B. Weinstein, J. Yun Jan 2005

Exclusive Ρ0 Meson Electroproduction From Hydrogen At Clas, C. Hadjidakis, M. Guidal, M. Garçon, J.-M. Laget, E. S. Smith, M. Vanderhaeghen, G. Adams, P. Ambrozewicz, E. Anciant, M. Anghinolfi, H. Bagdasaryan, K. V. Dharmawardane, G. E. Dodge, T. A. Forest, G. Gavalian, M. Guler, C. E. Hyde-Wright, A. Klein, A. V. Klimenko, S. E. Kuhn, R. A. Niyazov, L. M. Qin, F. Sabatie, L. B. Weinstein, J. Yun

Physics Faculty Publications

The longitudinal and transverse components of the cross section for the ep e′ 0 reaction were measured in Hall B at Jefferson Laboratory using the CLAS detector. The data were taken with a 4.247 GeV electron beam and were analyzed in a range of xB from 0.2 to 0.6 and of Q2 from 1.5 to 3.0 GeV2. The data are compared to a Regge model based on effective hadronic degrees of freedom and to a calculation based on Generalized Parton Distributions. It is found that, at our lowest xB values, the transverse part of the …


Beam-Helicity Asymmetries In Double-Charged-Pion Photoproduction On The Proton, H. Bagdasaryan, M. Bektasoglu, S. Bültmann, Gail Dodge, N. Guler, C. E. Hyde-Wright, H. G. Juengst, A. Klein, S. E. Kuhn, L. M. Qin, W. Roberts, F. Sabatié, S. Tkachenko, L. B. Weinstein, J. Yun, J. Zhang, Et Al., Clas Collaboration Jan 2005

Beam-Helicity Asymmetries In Double-Charged-Pion Photoproduction On The Proton, H. Bagdasaryan, M. Bektasoglu, S. Bültmann, Gail Dodge, N. Guler, C. E. Hyde-Wright, H. G. Juengst, A. Klein, S. E. Kuhn, L. M. Qin, W. Roberts, F. Sabatié, S. Tkachenko, L. B. Weinstein, J. Yun, J. Zhang, Et Al., Clas Collaboration

Physics Faculty Publications

Beam-helicity asymmetries for the two-pion-photoproduction reaction 𝛾⃗p → p π+π- have been studied for the first time in the resonance region for center-of-mass energies between 1.35 and 2.30 GeV. The experiment was performed at Jefferson Lab with the CEBAF Large Acceptance Spectrometer using circularly polarized tagged photons incident on an unpolarized hydrogen target. Beam-helicity-dependent angular distributions of the final-state particles were measured. The large cross-section asymmetries exhibit strong sensitivity to the kinematics and dynamics of the reaction. The data are compared with the results of various phenomenological model calculations, and show that these models currently do not …


Global Analysis Of Data On The Proton Structure Function G₁ And The Extraction Of Its Moments, M. Osipenko, S. Simula, W. Melnitchouk, P. Bosted, V. Burkert, E. Christy, K. Griffioen, C. Keppel, S. Kuhn, G. Ricco Jan 2005

Global Analysis Of Data On The Proton Structure Function G₁ And The Extraction Of Its Moments, M. Osipenko, S. Simula, W. Melnitchouk, P. Bosted, V. Burkert, E. Christy, K. Griffioen, C. Keppel, S. Kuhn, G. Ricco

Physics Faculty Publications

Inspired by recent measurements with the CLAS detector at Jefferson Lab, we perform a self-consistent analysis of world data on the proton structure function g1 in the range 0.17 < Q2 < 30 (GeV/c)2. We compute for the first time low-order moments of g, and study their evolution from small to large values of Q2. The analysis includes the latest data on both the unpolarized inclusive cross sections and the ratio R = σ LT from Jefferson Lab, as well as a new model for the transverse asymmetry A2 in the resonance region. The contributions of …


High-Energy Effective Action From Scattering Of Qcd Shock Waves, Ian Balitsky Jan 2005

High-Energy Effective Action From Scattering Of Qcd Shock Waves, Ian Balitsky

Physics Faculty Publications

At high energies, the relevant degrees of freedom are Wilson lines—infinite gauge links ordered along straight lines collinear to the velocities of colliding particles. The effective action for these Wilson lines is determined by the scattering of QCD shock waves. I develop the symmetric expansion of the effective action in powers of strength of one of the shock waves and calculate the leading term of the series. The corresponding first-order effective action, symmetric with respect to projectile and target, includes both up and down fan diagrams and pomeron loops.


Optimization Of Ultraviolet Emission And Chemical Species Generation From A Pulsed Dielectric Barrier Discharge At Atmospheric Pressure, Xinpei Lu, Mounir Laroussi Jan 2005

Optimization Of Ultraviolet Emission And Chemical Species Generation From A Pulsed Dielectric Barrier Discharge At Atmospheric Pressure, Xinpei Lu, Mounir Laroussi

Electrical & Computer Engineering Faculty Publications

One of the attractive features of nonthermal atmospheric pressure plasmas is the ability to achieve enhanced gas phase chemistry without the need for elevated gas temperatures. This attractive characteristic recently led to their extensive use in applications that require low temperatures, such as material processing and biomedical applications. The agents responsible for the efficient plasma reactivity are the ultraviolet (UV) photons and the chemically reactive species. In this paper, in order to optimize the UV radiation and reactive species generation efficiency, the plasma was generated by a dielectric barrier discharge driven by unipolar submicrosecond square pulses. To keep the discharge …


Condensation On (002) Graphite Of Liquid Bismuth Far Below Its Bulk Melting Point, M. K. Zayed, H. E. Elsayed-Ali Jan 2005

Condensation On (002) Graphite Of Liquid Bismuth Far Below Its Bulk Melting Point, M. K. Zayed, H. E. Elsayed-Ali

Electrical & Computer Engineering Faculty Publications

Condensation of thermally evaporated Bi on (002) graphite, at temperatures of 300-523K, was studied using in situ reflection high-energy electron diffraction (RHEED) and room temperature ex situ atomic force microscopy (AFM). For deposition at temperatures below 415±5K, transmission RHEED patterns of Bi appeared at an average thickness of ∼0.5 monolayer (ML). AFM images showed that the film consisted of crystallites in the shape of triangular step pyramids with step heights corresponding to single and double Bi layers in the [111] direction. This morphology indicates crystallization from the vapor. For deposition at higher temperatures, diffuse RHEED patterns appeared independent of the …


Room-Temperature Atmospheric Pressure Plasma For Biomedical Applications, Mounir Laroussi, Xinpei Lu Jan 2005

Room-Temperature Atmospheric Pressure Plasma For Biomedical Applications, Mounir Laroussi, Xinpei Lu

Electrical & Computer Engineering Faculty Publications

As low-temperature non-equilibrium plasmas come to play an increasing role in biomedical applications, reliable and user-friendly sources need to be developed. These plasma sources have to meet stringent requirements such as low temperature (at or near room temperature), no risk of arcing, operation at atmospheric pressure, preferably hand-held operation, low concentration of ozone generation, etc. In this letter, we present a device that meets exactly such requirements. This device is capable of generating a cold plasma plume several centimeters in length. It exhibits low power requirements as shown by its current-voltage characteristics. Using helium as a carrier gas, very little …


Self-Assembly Of Ge Quantum Dots On Si(100)- 2×1 By Pulsed Laser Deposition, M. S. Hegazy, H. E. Elsayed-Ali Jan 2005

Self-Assembly Of Ge Quantum Dots On Si(100)- 2×1 By Pulsed Laser Deposition, M. S. Hegazy, H. E. Elsayed-Ali

Electrical & Computer Engineering Faculty Publications

Self-assembled Ge quantum dots are grown on Si(100)- 2×1 by pulsed laser deposition. The growth is studied by in situ reflection high-energy electron diffraction and postdeposition atomic force microscopy. After the completion of the wetting layer, transient hut clusters, faceted by different planes, are observed. When the height of these clusters exceeded a certain value, the facets developed into {305} planes. Some of these huts become {305}-faceted pyramids as the film mean thickness was increased. With further thickness increase, dome clusters developed on the expense of these pyramids. © 2005 American Institute of Physics. [DOI: 10.1063/1.1949285]