Open Access. Powered by Scholars. Published by Universities.®

Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 12 of 12

Full-Text Articles in Physics

Low Saturation Intensities In Two-Photon Ultracold Collisions, C. I. Sukenik, D. Hoffman, S. Bali, T. Walker Jul 1998

Low Saturation Intensities In Two-Photon Ultracold Collisions, C. I. Sukenik, D. Hoffman, S. Bali, T. Walker

Physics Faculty Publications

We have observed violet photon emission resulting from energy-pooling collisions between ultracold Rb atoms illuminated by two colors of near-resonant infrared laser light. We have used this emission as a probe of doubly excited state ultracold collision dynamics. We have observed the lowest saturation intensity for light-induced ultracold collisions seen to date which we identify as due to depletion of incoming ground state flux. We have also varied the detuning of the lasers which allows us to clearly identify the effect of spontaneous emission and optical shielding.


Thermal Lattice Boltzmann Simulations Of Variable Prandtl Number Turbulent Flows, Min Soe, George Vahala, Pavol Pavlo, Linda L. Vahala, Hudong Chen Apr 1998

Thermal Lattice Boltzmann Simulations Of Variable Prandtl Number Turbulent Flows, Min Soe, George Vahala, Pavol Pavlo, Linda L. Vahala, Hudong Chen

Electrical & Computer Engineering Faculty Publications

Thermal lattice Boltzmann (TLBE) models that utilize the single relaxation time scalar Bhatnagar, Gross, and Krook collision operator have an invariant Prandtl number. For flows with arbitrary Prandtl number, a matrix collision operator is introduced. The relaxation parameters are generalized so that the transport coefficients become density independent. TLBE simulations are presented for two-dimensional free decaying turbulence induced by a strongly perturbed double velocity shear layer for various Prandtl numbers.


Integrable Unsteady Motion With An Application To Ocean Eddies, A. D. Kirwan Jr., Bruce L. Lipphardt Jan 1998

Integrable Unsteady Motion With An Application To Ocean Eddies, A. D. Kirwan Jr., Bruce L. Lipphardt

CCPO Publications

Application of the Brown-Samelson theorem, which shows that particle motion is integrable in a class of vorticity-conserving, two-dimensional incompressible hows, is extended here to a class of explicit time dependent dynamically balanced flows in multilayered systems. Particle motion for nonsteady two-dimensional flows with discontinuities in the vorticity or potential vorticity fields (modon solutions) is shown to be integrable. An example of a two-layer modon solution constrained by observations of a Gulf Stream ring system is discussed.


Emission Of Excimer Radiation From Direct Current, High-Pressure Hollow Cathode Discharge, Ahmed El-Habachi, Karl H. Schoenbach Jan 1998

Emission Of Excimer Radiation From Direct Current, High-Pressure Hollow Cathode Discharge, Ahmed El-Habachi, Karl H. Schoenbach

Bioelectrics Publications

A novel, nonequilibrium, high-pressure, direct current discharge, the microhollow cathode discharge, has been found to be an intense source of xenon and argon excimer radiation peaking at wavelengths of 170 and 130 nm, respectively. In argon discharges with a 100 μm diam hollow cathode, the intensity of the excimer radiation increased by a factor of 5 over the pressure range from 100 to 800 mbar. In xenon discharges, the intensity at 170 nm increased by two orders of magnitude when the pressure was raised from 250 mbar to 1 bar. Sustaining voltages were 200 V for argon and 400 V …


Higher Order Isotropic Velocity Grids In Lattice Methods, Pavol Pavlo, George Vahala, Linda L. Vahala Jan 1998

Higher Order Isotropic Velocity Grids In Lattice Methods, Pavol Pavlo, George Vahala, Linda L. Vahala

Electrical & Computer Engineering Faculty Publications

Kinetic lattice methods are a very attractive representation of nonlinear macroscopic systems because of their inherent parallelizability on multiple processors and their avoidance of the nonlinear convective terms. By uncoupling the velocity lattice from the spatial grid, one can employ higher order (non-space-filling) isotropic lattices-lattices which greatly enhance the stable parameter regions, particularly in thermal problems. In particular, the superiority of the octagonal lattice over previous models used in 2D (hexagonal or square) and 3D (projected face-centered hypercube) is shown.


Factorization For High-Energy Scattering, Ian Balitsky Jan 1998

Factorization For High-Energy Scattering, Ian Balitsky

Physics Faculty Publications

I demonstrate that the amplitude for the high-energy scattering can be factorized into a product of two independent functional integrals over “fast” and “slow” fields which interact by means of Wilson-line operators—gauge factors ordered along the straight lines.


Steady Incompressible Magnetohydrodynamic Flow Near A Point Of Reattachment, J. M. Dorrepaal, S. Moosavizadeh Jan 1998

Steady Incompressible Magnetohydrodynamic Flow Near A Point Of Reattachment, J. M. Dorrepaal, S. Moosavizadeh

Mathematics & Statistics Faculty Publications

The oblique stagnation-point flow of an electrically conducting fluid in the presence of a magnetic field is a highly nonlinear problem whose solution is of interest even in the simplest of geometries. The problem models the flow of a viscous conducting fluid near a point where a separation vortex reattaches itself to a rigid boundary. A similarity solution exists which reduces the problem to a coupled system of four ordinary differential equations which can be integrated numerically. The problem has two independent parameters, the conductivity of the fluid and the strength of the magnetic field. Solutions are tabulated for a …


Factorization And Effective Action For High-Energy Scattering In Qcd, Ian Balitsky Jan 1998

Factorization And Effective Action For High-Energy Scattering In Qcd, Ian Balitsky

Physics Faculty Publications

The author demonstrates that the amplitude of the high-energy scattering can be factorized in a convolution of the contributions due to fast and slow fields. The fast and slow fields interact by means of Wilson-line operators -- infinite gauge factors ordered along the straight line. The resulting factorization formula gives a starting point for a new approach to the effective action for high-energy scattering.


Temperature Dependence Of Step Density On Vicinal Pb(111), Z. H. Zhang, H. E. Elsayed-Ali Jan 1998

Temperature Dependence Of Step Density On Vicinal Pb(111), Z. H. Zhang, H. E. Elsayed-Ali

Electrical & Computer Engineering Faculty Publications

The temperature dependence of step density on the vicinal Pb(111) surface is investigated using reflection high-energy electron diffraction. When the temperature is increased from 323 to 590 K. the average terrace width and the average string length at the step edge decrease from 85±25 to 37±16 Å and from 220±33 to 25±8 Å, respectively. Thermal step collapse on the Pb(111) surface near its bulk melting temperature is not observed. Above 530±7 K, the change in the string length at the step edge with temperature becomes small, and the intensity of the (00) beam is significantly decreased. We conclude that partial …


Surface Morphology Of Laser-Superheated Pb(111) And Pb(100), Z. H. Zhang, Bo Lin, X. L. Zeng, H. E. Elsayed-Ali Jan 1998

Surface Morphology Of Laser-Superheated Pb(111) And Pb(100), Z. H. Zhang, Bo Lin, X. L. Zeng, H. E. Elsayed-Ali

Electrical & Computer Engineering Faculty Publications

The surface step density on the vicinal Pb(111) and the surface vacancy density on Pb(100) after laser superheating and melting are investigated using reflection high-energy electron diffraction. With ∼100-ps laser pulses, Pb(111) surface superheating does not significantly change the density of the steps and step-edge roughness. However, after laser surface melting, the average terrace width and the string length at the step edge become as large as those at room temperature. The average terrace width at 573 K changes from 38±15 to 64±19 Å after laser surface melting, while the average string length at the step edge changes from 90±14 …


Atomic Hydrogen Cleaning Of Inp(100) For Preparation Of A Negative Electron Affinity Photocathode, K. A. Elamrawi, M. A. Hafez, H. E. Elsayed-Ali Jan 1998

Atomic Hydrogen Cleaning Of Inp(100) For Preparation Of A Negative Electron Affinity Photocathode, K. A. Elamrawi, M. A. Hafez, H. E. Elsayed-Ali

Electrical & Computer Engineering Faculty Publications

Atomic hydrogen cleaning is used to clean InP(100) negative electron affinity photocathodes. Reflection high-energy electron diffraction patterns of reconstructed, phosphorus-stabilized, InP(100) surfaces are obtained after cleaning at ∼400 °C. These surfaces produce high quantum efficiency photocathodes (∼8.5%), in response to 632.8 nm light. Without atomic hydrogen cleaning, activation of InP to negative electron affinity requires heating to ∼530 °C. At this high temperature, phosphorus evaporates preferentially and a rough surface is obtained. These surfaces produce low quantum efficiency photocathodes (∼0.1%). The use of reflection high-energy electron diffraction to measure the thickness of the deposited cesium layer during activation by correlating …


Femtosecond Photoemission Study Of Ultrafast Electron Dynamics In Single-Crystal Au(111) Films, J. Cao, Y. Gao, H. E. Elsayed-Ali, R. J. D. Miller, D. A. Mantell Jan 1998

Femtosecond Photoemission Study Of Ultrafast Electron Dynamics In Single-Crystal Au(111) Films, J. Cao, Y. Gao, H. E. Elsayed-Ali, R. J. D. Miller, D. A. Mantell

Electrical & Computer Engineering Faculty Publications

The energy-dependent relaxation of photoexcited electrons has been measured by time-resolved two-photon photoemission spectroscopy on single-crystal Au(111) films with thickness ranging from 150 to 3000 Å. It is found that the energy-dependent relaxation does not show any significant thickness dependence, which indicates that electron transport is a much slower dynamical process in the near-surface region than expected from bulk properties. Furthermore, lifetimes of the photoexcited electrons can be fitted well by the Fermi-liquid theory with a scaling factor plus an effective upper lifetime. This observation enables separation of electron-electron scattering, and to a lesser extent electron-phonon scattering, processes from electron-transport …