Open Access. Powered by Scholars. Published by Universities.®

Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

PDF

Missouri University of Science and Technology

Series

Electron scattering

Articles 1 - 10 of 10

Full-Text Articles in Physics

Electron-Impact Ionization Of H₂O At Low Projectile Energy: Internormalized Triple-Differential Cross Sections In Three-Dimensional Kinematics, Xueguang Ren, Sadek Amami, Khokon Hossen, Esam Ali, Chuangang Ning, James Colgan, Don H. Madison, Andrew Dorn Feb 2017

Electron-Impact Ionization Of H₂O At Low Projectile Energy: Internormalized Triple-Differential Cross Sections In Three-Dimensional Kinematics, Xueguang Ren, Sadek Amami, Khokon Hossen, Esam Ali, Chuangang Ning, James Colgan, Don H. Madison, Andrew Dorn

Physics Faculty Research & Creative Works

We report a combined experimental and theoretical study of the electron-impact ionization of water (H2O) at the relatively low incident energy of E0=81eV in which either the 1b1 or 3a1 orbitals are ionized leading to the stable H2O cation. The experimental data were measured by using a reaction microscope, which can cover nearly the entire 4π solid angle for the secondary electron emission over a range of ejection energies. We present experimental data for the scattering angles of 6⁰ and 10⁰ for the faster of the two outgoing electrons as a function …


Coplanar Asymmetric Angles And Symmetric Energy Sharing Triple Differential Cross Sections For 200 Ev Electron-Impact Ionization Of Ar (3p), Zehra Nur Ozer, Sadek M. Amami, Onur Varol, Murat Yavuz, Mevlut Dogan, Don H. Madison Sep 2015

Coplanar Asymmetric Angles And Symmetric Energy Sharing Triple Differential Cross Sections For 200 Ev Electron-Impact Ionization Of Ar (3p), Zehra Nur Ozer, Sadek M. Amami, Onur Varol, Murat Yavuz, Mevlut Dogan, Don H. Madison

Physics Faculty Research & Creative Works

We have measured triple differential cross sections (TDCSs) for electron-impact ionization of the 3p shell of Ar at 200 eV incident electron energy. The experiments have been performed in coplanar asymmetric energy sharing geometry. The experimental results are compared with the theoretical models of three body distorted wave (3DW) and distorted wave Born approximation (DWBA).


Low-Energy (E₀ = 65 Ev) Electron-Impact Ionization Of Neon: Internormalized Triple-Differentical Cross Sections In 3d Kinematics, Xueguang Ren, Sadek M. Amami, Oleg I. Zatsarinny, Thomas Pfluger, Marvin Weyland, Woon Yong Baek, Hans Rabus, Klaus Bartschat, Don H. Madison, Alexander Dorn Sep 2015

Low-Energy (E₀ = 65 Ev) Electron-Impact Ionization Of Neon: Internormalized Triple-Differentical Cross Sections In 3d Kinematics, Xueguang Ren, Sadek M. Amami, Oleg I. Zatsarinny, Thomas Pfluger, Marvin Weyland, Woon Yong Baek, Hans Rabus, Klaus Bartschat, Don H. Madison, Alexander Dorn

Physics Faculty Research & Creative Works

We present a combined experimental and theoretical study on the low-energy (E0 = 65 eV) electron- impact ionization of neon. The experimental data are compared to predictions from a hybrid second-order distorted-wave Born plus R-matrix approach (DWB2-RM), the distorted-wave Born approximation with inclusion of post-collision interaction (DWBA-PCI), a three-body distorted-wave approach (3DW), and a B-spline R-matrix (BSR) with pseudostates approach. Excellent agreement is found between experiment and the 3DW and BSR theories. The importance of PCI effects is clearly visible in this low-energy electron-impact ionization process.


A Dynamical (E,2e) Investigation Of The Structurally Related Cyclic Ethers Tetrahydrofuran, Tetrahydropyran, And 1,4-Dioxane, J. D. Builth-Williams, Susan M. Bellm, Luca Chiari, Penny A. Thorn, Darryl B. Jones, Hari Chaluvadi, Don H. Madison, Chuangang Ning, B. Lohmann, Gabriel Da Silva, Michael J. Brunger Jun 2013

A Dynamical (E,2e) Investigation Of The Structurally Related Cyclic Ethers Tetrahydrofuran, Tetrahydropyran, And 1,4-Dioxane, J. D. Builth-Williams, Susan M. Bellm, Luca Chiari, Penny A. Thorn, Darryl B. Jones, Hari Chaluvadi, Don H. Madison, Chuangang Ning, B. Lohmann, Gabriel Da Silva, Michael J. Brunger

Physics Faculty Research & Creative Works

Triple differential cross section measurements for the electron-impact ionization of the highest occupied molecular orbitals of tetrahydropyran and 1,4-dioxane are presented. For each molecule, experimental measurements were performed using the (e,2e) technique in asymmetric coplanar kinematics with an incident electron energy of 250 eV and an ejected electron energy of 20 eV. With the scattered electrons being detected at -5°, the angular distributions of the ejected electrons in the binary and recoil regions were observed. These measurements are compared with calculations performed within the molecular 3-body distorted wave model. Here, reasonable agreement was observed between the theoretical model and the …


(E,2e) Measurements On Xenon: Reexamination Of The Fine-Structure Effect, Radmila Panajotovic, Julian C A Lower, Erich Weigold, A. Prideaux, Don H. Madison May 2006

(E,2e) Measurements On Xenon: Reexamination Of The Fine-Structure Effect, Radmila Panajotovic, Julian C A Lower, Erich Weigold, A. Prideaux, Don H. Madison

Physics Faculty Research & Creative Works

The process of electron scattering from heavy target atoms is of considerable interest due to the enhanced role of relativistic effects and distortion of the electron trajectories resulting from the large value of nuclear charge. Here we present (e,2e) ionization measurements and distorted-wave Born approximation calculations for the scattering of spin-polarized electrons from xenon atoms in which the fine-structure levels of the residual ion are resolved. Comparison of measurements performed using a high-sensitivity toroidal analyzer spectrometer with the predictions of sophisticated calculations provide an improved understanding of the ionization dynamics of heavy target atoms and the treatment of electron exchange …


Slow Convergence Of The Born Approximation For Electron-Atom Ionization, Stephenie J. Jones, Don H. Madison Dec 2002

Slow Convergence Of The Born Approximation For Electron-Atom Ionization, Stephenie J. Jones, Don H. Madison

Physics Faculty Research & Creative Works

It is usually assumed that the first-Born approximation for electron-atom ionization becomes valid for the fully differential cross section at sufficiently high impact energies, at least for asymmetric collisions where the projectile suffers only a small energy loss and is scattered by a small angle. Here we investigate this assumption quantitatively for ionization of hydrogen atoms. We find that convergence of the Born approximation to the correct nonrelativistic result is generally achieved only at energies where relativistic effects start to become important. Consequently, the assumption that the Born approximation becomes valid for high energy is inaccurate, since by the time …


Differential Cross Sections And Cross-Section Ratios For The Electron-Impact Excitation Of The Neon 2p⁵3s Configuration, Murtadha A. Khakoo, James M. Wrkich, Mary Lu Larsen, G. Kleiban, Isik Kanik, Sandor Trajmar, Michael J. Brunger, P. J O Teubner, Albert Crowe, Christopher J. Fontes, Robert E H Clark, Vlado Zeman, Klaus Bartschat, Don H. Madison, Rajesh C. Srivastava, Allan Daniel Stauffer Jun 2002

Differential Cross Sections And Cross-Section Ratios For The Electron-Impact Excitation Of The Neon 2p⁵3s Configuration, Murtadha A. Khakoo, James M. Wrkich, Mary Lu Larsen, G. Kleiban, Isik Kanik, Sandor Trajmar, Michael J. Brunger, P. J O Teubner, Albert Crowe, Christopher J. Fontes, Robert E H Clark, Vlado Zeman, Klaus Bartschat, Don H. Madison, Rajesh C. Srivastava, Allan Daniel Stauffer

Physics Faculty Research & Creative Works

Electron-impact differential cross-section measurements for the excitation of the 2p53s configuration of Ne are reported. The Ne cross sections are obtained using experimental differential cross sections for the electron-impact excitation of the n = 2 levels of atomic hydrogen [Khakoo et al., Phys. Rev. A 61, 012701-1 (1999)], and existing experimental helium differential cross-section measurements, as calibration standards. These calibration measurements were made using the method of gas mixtures (Ne and H followed by Ne and He), in which the gas beam profiles of the mixed gases are found to be the same within our experimental errors. We …


Doubly Differential Electron-Emission Spectra In Single And Multiple Ionization Of Noble-Gas Atoms By Fast Highly-Charged-Ion Impact, Tom Kirchner, Laszlo Gulyas, Robert Moshammer, Michael Schulz, Joachim Hermann Ullrich Apr 2002

Doubly Differential Electron-Emission Spectra In Single And Multiple Ionization Of Noble-Gas Atoms By Fast Highly-Charged-Ion Impact, Tom Kirchner, Laszlo Gulyas, Robert Moshammer, Michael Schulz, Joachim Hermann Ullrich

Physics Faculty Research & Creative Works

Low-energy electron emission spectra are studied in collisions of 3.6 MeV/amu Au53+ ions with neon and argon atoms for well-defined degrees of target ionization. We calculate doubly differential cross sections as functions of the recoil-ion charge state in the continuum-distorted-wave with eikonal initial-state approximation using a binomial analysis of the total and differential ionization probabilities, and compare them with the present and with previously published experimental data. Very good agreement is found for the single-ionization spectra and for double ionization of neon, while some discrepancies are observed in the spectra for double and triple ionization of argon.


Simultaneous Projectile-Target Ionization: A Novel Approach To (E, 2e) Experiments On Ions, Holger Kollmus, Robert Moshammer, Ronald E. Olson, Siegbert Hagmann, Michael Schulz, Joachim Hermann Ullrich Feb 2002

Simultaneous Projectile-Target Ionization: A Novel Approach To (E, 2e) Experiments On Ions, Holger Kollmus, Robert Moshammer, Ronald E. Olson, Siegbert Hagmann, Michael Schulz, Joachim Hermann Ullrich

Physics Faculty Research & Creative Works

A kinematically complete experiment for simultaneous ionization of a projectile and target has been performed for 3.6 MeV/u C2+ on He collisions measuring the final vector momenta of the He1+ recoil ion and of two electrons (projectile, target) in coincidence with the emerging C3+ projectile. The feasibility of an event-by-event separation of the various reaction channels, among them the ionization of C2+ by the interaction with a quasifree target electron, is demonstrated in agreement with six-body classical trajectory Monte Carlo calculations, paving the way to kinematically complete electron-ion scattering experiments.


Ionization Of Hydrogen Atoms By Fast Electrons, Sindu P. Jones, Don H. Madison Oct 2000

Ionization Of Hydrogen Atoms By Fast Electrons, Sindu P. Jones, Don H. Madison

Physics Faculty Research & Creative Works

We study ionization of atomic hydrogen by fast electrons using asymptotically correct two-center wave functions to describe the scattering system both initially and finally. For the final state, we employ the well-known product wave function of Redmond, which treats all three two-body Coulomb interactions exactly, albeit independently. This "3C" wave function is the leading term of the exact scattering wave function, regardless of how slow the three particles are, if any two particles have large relative separation [Y.E. Kim and A.L. Zubarev, Phys. Rev. A 56, 521 (1997)]. Here we extend the analysis of Qiu et al. [Phys. Rev. A …