Open Access. Powered by Scholars. Published by Universities.®

Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 30 of 148

Full-Text Articles in Physics

Exploring The Coronal Magnetic Field With Galactic Cosmic Rays: The Sun Shadow Observed By Hawc, R. Alfaro, C. Alvarez, J. C. Arteaga-Velázquez, K. P. Arunbabu, D. Avila Rojas, R. Babu, Et Al. May 2024

Exploring The Coronal Magnetic Field With Galactic Cosmic Rays: The Sun Shadow Observed By Hawc, R. Alfaro, C. Alvarez, J. C. Arteaga-Velázquez, K. P. Arunbabu, D. Avila Rojas, R. Babu, Et Al.

Michigan Tech Publications, Part 2

Galactic cosmic rays (GCRs) are charged particles that reach the heliosphere almost isotropically in a wide energy range. In the inner heliosphere, the GCR flux is modulated by solar activity so that only energetic GCRs reach the lower layers of the solar atmosphere. In this work, we propose that high-energy GCRs can be used to explore the solar magnetic fields at low coronal altitudes. We used GCR data collected by the High-Altitude Water Cherenkov observatory to construct maps of GCR flux coming from the Sun’s sky direction and studied the observed GCR deficit, known as Sun shadow (SS), over a …


A Jwst Survey Of The Supernova Remnant Cassiopeia A, Dan Milisavljevic, Tea Temim, Ilse De Looze, Danielle Dickinson, J. Martin Laming, Robert Fesen, John C. Raymond, Richard G. Arendt, Jacco Vink, Bettina Posselt, George G. Pavlov, Ori D. Fox, Ethan Pinarski, Bhagya Subrayan, Judy Schmidt, William P. Blair, Armin Rest, Daniel Patnaude, Bon Chul Koo, Jeonghee Rho, Salvatore Orlando, Hans Thomas Janka, Moira Andrews, Michael J. Barlow, Adam Burrows, Roger Chevalier, Geoffrey Clayton, Claes Fransson, Christopher Fryer, Haley L. Gomez, Florian Kirchschlager Apr 2024

A Jwst Survey Of The Supernova Remnant Cassiopeia A, Dan Milisavljevic, Tea Temim, Ilse De Looze, Danielle Dickinson, J. Martin Laming, Robert Fesen, John C. Raymond, Richard G. Arendt, Jacco Vink, Bettina Posselt, George G. Pavlov, Ori D. Fox, Ethan Pinarski, Bhagya Subrayan, Judy Schmidt, William P. Blair, Armin Rest, Daniel Patnaude, Bon Chul Koo, Jeonghee Rho, Salvatore Orlando, Hans Thomas Janka, Moira Andrews, Michael J. Barlow, Adam Burrows, Roger Chevalier, Geoffrey Clayton, Claes Fransson, Christopher Fryer, Haley L. Gomez, Florian Kirchschlager

Michigan Tech Publications, Part 2

We present initial results from a James Webb Space Telescope (JWST) survey of the youngest Galactic core-collapse supernova remnant, Cassiopeia A (Cas A), made up of NIRCam and MIRI imaging mosaics that map emission from the main shell, interior, and surrounding circumstellar/interstellar material (CSM/ISM). We also present four exploratory positions of MIRI Medium Resolution Spectrograph integral field unit spectroscopy that sample ejecta, CSM, and associated dust from representative shocked and unshocked regions. Surprising discoveries include (1) a weblike network of unshocked ejecta filaments resolved to ∼0.01 pc scales exhibiting an overall morphology consistent with turbulent mixing of cool, low-entropy matter …


Machine Learning Techniques For Intermediate Mass Gap Lepton Partner Searches At The Large Hadron Collider, Bhaskar Dutta, Tathagata Ghosh, Alyssa Horne, Jason Kumar, Sean Palmer, Pearl Sandick, Marcus Snedeker, Patrick Stengel, Joel W. Walker Apr 2024

Machine Learning Techniques For Intermediate Mass Gap Lepton Partner Searches At The Large Hadron Collider, Bhaskar Dutta, Tathagata Ghosh, Alyssa Horne, Jason Kumar, Sean Palmer, Pearl Sandick, Marcus Snedeker, Patrick Stengel, Joel W. Walker

Michigan Tech Publications, Part 2

We consider machine learning techniques associated with the application of a boosted decision tree (BDT) to searches at the Large Hadron Collider (LHC) for pair-produced lepton partners which decay to leptons and invisible particles. This scenario can arise in the minimal supersymmetric Standard Model (MSSM), but can be realized in many other extensions of the Standard Model (SM). We focus on the case of intermediate mass splitting (∼30 GeV) between the dark matter (DM) and the scalar. For these mass splittings, the LHC has made little improvement over LEP due to large electroweak backgrounds. We find that the use of …


Constraints On Metastable Superheavy Dark Matter Coupled To Sterile Neutrinos With The Pierre Auger Observatory, A. Abdul Halim, P. Abreu, M. Aglietta, I. Allekotte, K. Almeida Cheminant, A. Almela, B. Fick, K. Nguyen, D. Nitz, Et Al. Apr 2024

Constraints On Metastable Superheavy Dark Matter Coupled To Sterile Neutrinos With The Pierre Auger Observatory, A. Abdul Halim, P. Abreu, M. Aglietta, I. Allekotte, K. Almeida Cheminant, A. Almela, B. Fick, K. Nguyen, D. Nitz, Et Al.

Michigan Tech Publications, Part 2

Dark matter particles could be superheavy, provided their lifetime is much longer than the age of the Universe. Using the sensitivity of the Pierre Auger Observatory to ultrahigh energy neutrinos and photons, we constrain a specific extension of the Standard Model of particle physics that meets the lifetime requirement for a superheavy particle by coupling it to a sector of ultralight sterile neutrinos. Our results show that, for a typical dark coupling constant of 0.1, the mixing angle θm between active and sterile neutrinos must satisfy, roughly, θm≲1.5×10-6(MX/109 GeV)-2 for a mass MX of the dark-matter particle between 108 GeV …


Light Curve And Hardness Tests For Millilensing In Grb 081122a, Grb 081126a, Grb 110517b, And Grb 210812a, Oindabi Mukherjee, Robert J. Nemiroff Mar 2024

Light Curve And Hardness Tests For Millilensing In Grb 081122a, Grb 081126a, Grb 110517b, And Grb 210812a, Oindabi Mukherjee, Robert J. Nemiroff

Michigan Tech Publications, Part 2

Analyses are given on four recent gravitational millilensing claims on gamma-ray bursts (GRBs): GRB 081122A, GRB 081126A, GRB 110517B, and GRB 210812A. Two tests, a light curve similarity test and a hardness similarity test, compare different temporal sections of a single GRB to see if they are statistically similar. The hardness similarity test shows that the ratio between the second and the first emission episodes in each energy channel differed from the same ratio averaged over all energy channels at above 90 per cent confidence level in GRB 081122A. Additionally, the light curve similarity test applied to GRB 081122A, GRB …


First-Principles Study Of Hydrogen Storage Application Of Ti3c2tx Monolayer Mxene, Yi Zhi Chu, Kah Chun Lau Feb 2024

First-Principles Study Of Hydrogen Storage Application Of Ti3c2tx Monolayer Mxene, Yi Zhi Chu, Kah Chun Lau

Michigan Tech Publications, Part 2

MXene, with its high aspect ratio and adjustable surface properties, has garnered significant attention in the realm of hydrogen storage research. For the first time, considering a ternary/quaternary mixed terminated MXene surface, the authors have investigated comprehensively the hydrogen storage potential of two-dimensional (2D) titanium carbide Ti3C2Tx monolayer MXene using density functional theory (DFT). By considering mixed terminated surfaces, this study indicated the locally induced dipole due to the mixed termination is beneficial in facilitating hydrogen adsorption with stronger average adsorption energies than that of the uniform F-/O-/OH-/H-terminated surfaces. The authors estimated a compelling average H2 surface adsorption energy on …


Progress In Electronic, Energy, Biomedical And Environmental Applications Of Boron Nitride And Mos2 Nanostructures, Join Uddin, Raksha Dubey, Vinaayak Sivam Balasubramaniam, Jeff Kabel, Vedika Khare, Zohreh Salimi, Sambhawana Sharma, Dongyan Zhang, Yoke Khin Yap Feb 2024

Progress In Electronic, Energy, Biomedical And Environmental Applications Of Boron Nitride And Mos2 Nanostructures, Join Uddin, Raksha Dubey, Vinaayak Sivam Balasubramaniam, Jeff Kabel, Vedika Khare, Zohreh Salimi, Sambhawana Sharma, Dongyan Zhang, Yoke Khin Yap

Michigan Tech Publications, Part 2

In this review, we examine recent progress using boron nitride (BN) and molybdenum disulfide (MoS) nanostructures for electronic, energy, biomedical, and environmental applications. The scope of coverage includes zero-, one-, and two-dimensional nanostructures such as BN nanosheets, BN nanotubes, BN quantum dots, MoS nanosheets, and MoS quantum dots. These materials have sizable bandgaps, differentiating them from other metallic nanostructures or small-bandgap materials. We observed two interesting trends: (1) an increase in applications that use heterogeneous materials by combining BN and MoS nanostructures with other nanomaterials, and (2) strong research interest in environmental applications. Last, we encourage researchers to study how …


Detection Of Small Drizzle Droplets In A Large Cloud Chamber Using Ultrahigh-Resolution Radar, Zeen Zhu, Fan Yang, Pavlos Kollias, Raymond A. Shaw, Alexander Kostinski, Steve Krueger, Katia Lamer, Nithin Allwayin, Mariko Oue Feb 2024

Detection Of Small Drizzle Droplets In A Large Cloud Chamber Using Ultrahigh-Resolution Radar, Zeen Zhu, Fan Yang, Pavlos Kollias, Raymond A. Shaw, Alexander Kostinski, Steve Krueger, Katia Lamer, Nithin Allwayin, Mariko Oue

Michigan Tech Publications, Part 2

A large convection-cloud chamber has the potential to produce drizzle-sized droplets, thus offering a new opportunity to investigate aerosol-cloud-drizzle interactions at a fundamental level under controlled environmental conditions. One key measurement requirement is the development of methods to detect the low-concentration drizzle drops in such a large cloud chamber. In particular, remote sensing methods may overcome some limitations of in situ methods. Here, the potential of an ultrahigh-resolution radar to detect the radar return signal of a small drizzle droplet against the cloud droplet background signal is investigated. It is found that using a small sampling volume is critical to …


First-Principles Study Of Mxene Properties With Varying Hydrofluoric Acid Concentration, Yi Zhi Chu, Megan Hoover, Patrick Ward, Kah Chun Lau Feb 2024

First-Principles Study Of Mxene Properties With Varying Hydrofluoric Acid Concentration, Yi Zhi Chu, Megan Hoover, Patrick Ward, Kah Chun Lau

Michigan Tech Publications, Part 2

With varying hydrofluoric acid (HF) concentrations under three etching conditions, we presented a comparative study of the effects of both the ordered and randomly ternary mixed terminated Ti3C2Tx surfaces with a wide variation of O/OH/F stoichiometry on the thermodynamic stability and electronic properties. Regardless of the HF concentration, an OH-rich surface is found to be thermodynamically stable and the electrical conductivity of Ti3C2Tx is substantially affected by the OH concentration. The charge density difference and electron localization function demonstrated a significant electron localization at the hydroxyl group on the O/OH/F mixed terminated surface, which could yield a locally induced dipole …


Search For Decaying Dark Matter In The Virgo Cluster Of Galaxies With Hawc, A. Albert, R. Alfaro, C. Alvarez, J. C. Arteaga-Velázquez, H. A. Ayala Solares, R. Babu, R. Turner, X. Wang, Et Al. Feb 2024

Search For Decaying Dark Matter In The Virgo Cluster Of Galaxies With Hawc, A. Albert, R. Alfaro, C. Alvarez, J. C. Arteaga-Velázquez, H. A. Ayala Solares, R. Babu, R. Turner, X. Wang, Et Al.

Michigan Tech Publications, Part 2

The decay or annihilation of dark matter particles may produce a steady flux of very-high-energy gamma rays detectable above the diffuse background. Nearby clusters of galaxies provide excellent targets to search for the signatures of particle dark matter interactions. In particular, the Virgo cluster spans several degrees across the sky and can be efficiently probed with a wide field-of-view instrument. The High Altitude Water Cherenkov (HAWC) observatory, due to its wide field of view and sensitivity to gamma rays at an energy scale of 300 GeV-100 TeV is well-suited for this search. Using 2141 days of data, we search for …


Resolving The Topology Of Encircling Multiple Exceptional Points, Chitres Guria, Qi Zhong, Sahin Kaya Ozdemir, Yogesh S.S. Patil, Ramy El-Ganainy, Jack Gwynne Emmet Harris Feb 2024

Resolving The Topology Of Encircling Multiple Exceptional Points, Chitres Guria, Qi Zhong, Sahin Kaya Ozdemir, Yogesh S.S. Patil, Ramy El-Ganainy, Jack Gwynne Emmet Harris

Michigan Tech Publications, Part 2

Non-Hermiticity has emerged as a new paradigm for controlling coupled-mode systems in ways that cannot be achieved with conventional techniques. One aspect of this control that has received considerable attention recently is the encircling of exceptional points (EPs). To date, most work has focused on systems consisting of two modes that are tuned by two control parameters and have isolated EPs. While these systems exhibit exotic features related to EP encircling, it has been shown that richer behavior occurs in systems with more than two modes. Such systems can be tuned by more than two control parameters, and contain EPs …


Galactic Gamma-Ray Diffuse Emission At Tev Energies With Hawc Data, R. Alfaro, C. Alvarez, J. C. Arteaga-Velázquez, K. P. Arunbabu, D. Avila Rojas, R. Babu, Et Al. Jan 2024

Galactic Gamma-Ray Diffuse Emission At Tev Energies With Hawc Data, R. Alfaro, C. Alvarez, J. C. Arteaga-Velázquez, K. P. Arunbabu, D. Avila Rojas, R. Babu, Et Al.

Michigan Tech Publications, Part 2

Galactic gamma-ray diffuse emission (GDE) is emitted by cosmic rays (CRs), ultra-relativistic protons, and electrons, interacting with gas and electromagnetic radiation fields in the interstellar medium. Here we present the analysis of teraelectronvolt diffuse emission from a region of the Galactic plane over the range in longitude of l ∈ [43°, 73°], using data collected with the High Altitude Water Cherenkov (HAWC) detector. Spectral, longitudinal, and latitudinal distributions of the teraelectronvolt diffuse emission are shown. The radiation spectrum is compatible with the spectrum of the emission arising from a CR population with an index similar to that of the observed …


Demonstrating Agreement Between Radio And Fluorescence Measurements Of The Depth Of Maximum Of Extensive Air Showers At The Pierre Auger Observatory, A. Abdul Halim, P. Abreu, M. Aglietta, I. Allekotte, K. Almeida Cheminant, A. Almela, B. Fick, D. Nitz, K. Nguyen, A. Puyleart, Et Al. Jan 2024

Demonstrating Agreement Between Radio And Fluorescence Measurements Of The Depth Of Maximum Of Extensive Air Showers At The Pierre Auger Observatory, A. Abdul Halim, P. Abreu, M. Aglietta, I. Allekotte, K. Almeida Cheminant, A. Almela, B. Fick, D. Nitz, K. Nguyen, A. Puyleart, Et Al.

Michigan Tech Publications, Part 2

We show, for the first time, radio measurements of the depth of shower maximum (Xmax) of air showers induced by cosmic rays that are compared to measurements of the established fluorescence method at the same location. Using measurements at the Pierre Auger Observatory we show full compatibility between our radio and the previously published fluorescence dataset, and between a subset of air showers observed simultaneously with both radio and fluorescence techniques, a measurement setup unique to the Pierre Auger Observatory. Furthermore, we show radio Xmax resolution as a function of energy and demonstrate the ability to make competitive high-resolution Xmax …


Radio Measurements Of The Depth Of Air-Shower Maximum At The Pierre Auger Observatory, A. Abdul Halim, P. Abreu, M. Aglietta, I. Allekotte, K. Almeida Cheminant, A. Almela, B. Fick, D. Nitz, K. Nguyen, A. Puyleart, Et Al. Jan 2024

Radio Measurements Of The Depth Of Air-Shower Maximum At The Pierre Auger Observatory, A. Abdul Halim, P. Abreu, M. Aglietta, I. Allekotte, K. Almeida Cheminant, A. Almela, B. Fick, D. Nitz, K. Nguyen, A. Puyleart, Et Al.

Michigan Tech Publications, Part 2

The Auger Engineering Radio Array (AERA), part of the Pierre Auger Observatory, is currently the largest array of radio antenna stations deployed for the detection of cosmic rays, spanning an area of 17 km2 with 153 radio stations. It detects the radio emission of extensive air showers produced by cosmic rays in the 30-80 MHz band. Here, we report the AERA measurements of the depth of the shower maximum (Xmax), a probe for mass composition, at cosmic-ray energies between 1017.5 and 1018.8 eV, which show agreement with earlier measurements with the fluorescence technique at the Pierre Auger Observatory. We show …


Designing A Convection-Cloud Chamber For Collision-Coalescence Using Large-Eddy Simulation With Bin Microphysics, Aaron Wang, Mikhail Ovchinnikov, Fan Yang, Silvio Schmalfuss, Raymond A. Shaw Jan 2024

Designing A Convection-Cloud Chamber For Collision-Coalescence Using Large-Eddy Simulation With Bin Microphysics, Aaron Wang, Mikhail Ovchinnikov, Fan Yang, Silvio Schmalfuss, Raymond A. Shaw

Michigan Tech Publications, Part 2

Collisional growth of cloud droplets is an essential yet uncertain process for drizzle and precipitation formation. To improve the quantitative understanding of this key component of cloud-aerosol-turbulence interactions, observational studies of collision-coalescence in a controlled laboratory environment are needed. In an existing convection-cloud chamber (the Pi Chamber), collisional growth is limited by low liquid water content and short droplet residence times. In this work, we use numerical simulations to explore various configurations of a convection-cloud chamber that may intensify collision-coalescence. We employ a large-eddy simulation (LES) model with a size-resolved (bin) cloud microphysics scheme to explore how cloud properties and …


Light Curve And Hardness Tests For Millilensing In Grb 950830, Grb 090717a, And Grb 200716c, Oindabi Mukherjee, Robert J. Nemiroff Jan 2024

Light Curve And Hardness Tests For Millilensing In Grb 950830, Grb 090717a, And Grb 200716c, Oindabi Mukherjee, Robert J. Nemiroff

Michigan Tech Publications, Part 2

Two different temporal sections of a single gamma-ray burst (GRB) must be statistically similar to show an internal gravitational lensing signature. Here, two straightforward gravitational lensing tests are defined and applied: a light curve similarity test and a hardness similarity test. Gravitational millilensing has been claimed to be detected within several individual GRBs that contain two emission episodes separated by a time-delay. However, our analyses indicate that none of those claims satisfy both tests. The hardness similarity test performed on GRB 950830 and GRB 090717A found that the ratio between the second and the first emission episodes in each energy …


Constraining Models For The Origin Of Ultra-High-Energy Cosmic Rays With A Novel Combined Analysis Of Arrival Directions, Spectrum, And Composition Data Measured At The Pierre Auger Observatory, A. Abdul Halim, P. Abreu, M. Aglietta, I. Allekotte, K. Almeida Cheminant, A. Almela, B. Fick, D. Nitz, A. Puyleart, Et Al. Jan 2024

Constraining Models For The Origin Of Ultra-High-Energy Cosmic Rays With A Novel Combined Analysis Of Arrival Directions, Spectrum, And Composition Data Measured At The Pierre Auger Observatory, A. Abdul Halim, P. Abreu, M. Aglietta, I. Allekotte, K. Almeida Cheminant, A. Almela, B. Fick, D. Nitz, A. Puyleart, Et Al.

Michigan Tech Publications, Part 2

The combined fit of the measured energy spectrum and shower maximum depth distributions of ultra-high-energy cosmic rays is known to constrain the parameters of astrophysical models with homogeneous source distributions. Studies of the distribution of the cosmic-ray arrival directions show a better agreement with models in which a fraction of the flux is non-isotropic and associated with the nearby radio galaxy Centaurus A or with catalogs such as that of starburst galaxies. Here, we present a novel combination of both analyses by a simultaneous fit of arrival directions, energy spectrum, and composition data measured at the Pierre Auger Observatory. The …


Identification Of Selected Persistent Organic Pollutants In Agricultural Land By Carbon Nitride (C3n5) Based Nano Sensors, Puspamitra Panigrahi, P. S. Anuroop, Hoonkyung Lee, Hyeonhu Bae, Thanayut Kaewmaraya, Ravindra Pandey, Tanveer Hussain, Akshaya Panigrahi Nov 2023

Identification Of Selected Persistent Organic Pollutants In Agricultural Land By Carbon Nitride (C3n5) Based Nano Sensors, Puspamitra Panigrahi, P. S. Anuroop, Hoonkyung Lee, Hyeonhu Bae, Thanayut Kaewmaraya, Ravindra Pandey, Tanveer Hussain, Akshaya Panigrahi

Michigan Tech Publications, Part 2

Efficient detection of selected persistent organic pollutants (POPs) is extremely important for the safety of humans and for the moderation of agriculture. This calls for the design of versatile nanosensors capable of sensing toxic POPs with high sensitivity and selectivity. Inspired by this, the sensing characteristics of carbon nitride (C3N5) monolayers toward selected POPs are reported, such as Dichlorodiphenyltrichloroethane (DDT), Methoxychlor (DMDT), Fenthion (FT), Fenitrothion (FNT), and Rennol (RL), employing density functional theory calculations. Analysis of results predicts adsorption energies of −0.93, −1.55, −1.44, −0.98, and −1.15 eV for DDT, DMDT, FT, FNT, and RM, respectively, on C3N5 monolayers. Significant …


Fast And Slow Microphysics Regimes In A Minimalist Model Of Cloudy Rayleigh-Bénard Convection, Raymond A. Shaw, Subin Thomas, Prasanth Prabhakaran, Will Cantrell, Mikhail Ovchinnikov, Fan Yang Oct 2023

Fast And Slow Microphysics Regimes In A Minimalist Model Of Cloudy Rayleigh-Bénard Convection, Raymond A. Shaw, Subin Thomas, Prasanth Prabhakaran, Will Cantrell, Mikhail Ovchinnikov, Fan Yang

Michigan Tech Publications, Part 2

A minimalist model of microphysical properties in cloudy Rayleigh-Bénard convection is developed based on mass and number balances for cloud droplets growing by vapor condensation. The model is relevant to a turbulent mixed-layer in which a steady forcing of supersaturation can be defined, e.g., a model of the cloudy boundary layer or a convection-cloud chamber. The model assumes steady injection of aerosol particles that are activated to form cloud droplets, and the removal of cloud droplets through sedimentation. Simplifying assumptions include the consideration of mean properties in steady state, neglect of coalescence growth, and no detailed representation of the droplet …


Augerprime Surface Detector Electronics, A. Abdul Halim, P. Abreu, M. Aglietta, P. Allison, I. Allekotte, K. Almeida Cheminant, B. Fick, K. Nguyen, D. Nitz, A. Puyleart, Et Al. Oct 2023

Augerprime Surface Detector Electronics, A. Abdul Halim, P. Abreu, M. Aglietta, P. Allison, I. Allekotte, K. Almeida Cheminant, B. Fick, K. Nguyen, D. Nitz, A. Puyleart, Et Al.

Michigan Tech Publications, Part 2

Operating since 2004, the Pierre Auger Observatory has led to major advances in our understanding of the ultra-high-energy cosmic rays. The latest findings have revealed new insights that led to the upgrade of the Observatory, with the primary goal of obtaining information on the primary mass of the most energetic cosmic rays on a shower-by-shower basis. In the framework of the upgrade, called AugerPrime, the 1660 water-Cherenkov detectors of the surface array are equipped with plastic scintillators and radio antennas, allowing us to enhance the composition sensitivity. To accommodate new detectors and to increase experimental capabilities, the electronics is also …


Hawc Study Of The Very-High-Energy Γ-Ray Spectrum Of Hawc J1844−034, A. Albert, C. Alvarez, D. Avila Rojas, H. A.Ayala Solares, R. Babu, E. Belmont-Moreno, S. Groetsch, D. Huang, P. Huntemeyer, R. Turner, X. Wang, Et Al. Sep 2023

Hawc Study Of The Very-High-Energy Γ-Ray Spectrum Of Hawc J1844−034, A. Albert, C. Alvarez, D. Avila Rojas, H. A.Ayala Solares, R. Babu, E. Belmont-Moreno, S. Groetsch, D. Huang, P. Huntemeyer, R. Turner, X. Wang, Et Al.

Michigan Tech Publications, Part 2

Recently, the region surrounding eHWC J1842−035 has been studied extensively by γ-ray observatories due to its extended emission reaching up to a few hundred TeV and potential as a hadronic accelerator. In this work, we use 1910 days of cumulative data from the High Altitude Water Cherenkov (HAWC) observatory to carry out a dedicated systematic source search of the eHWC J1842−035 region. During the search, we found three sources in the region, namely, HAWC J1844−034, HAWC J1843−032, and HAWC J1846−025. We have identified HAWC J1844−034 as the extended source that emits photons with energies up to 175 TeV. We compute …


A Search For Relativistic Ejecta In A Sample Of Ztf Broad-Lined Type Ic Supernovae, Alessandra Corsi, Anna Y.Q. Ho, S. Bradley Cenko, Shrinivas R. Kulkarni, Shreya Anand, Sheng Yang, Jesper Sollerman, Gokul P. Srinivasaragavan, Conor M.B. Omand, Arvind Balasubramanian, Dale A. Frail, Christoffer Fremling, Daniel A. Perley, Yuhan Yao, Aishwarya S. Dahiwale, Kishalay De, Alison Dugas, Matthew Hankins, Jacob Jencson, Mansi M. Kasliwal, Anastasios Tzanidakis, Eric C. Bellm, Russ R. Laher, Frank J. Masci, Josiah N. Purdum, Nicolas Regnault Aug 2023

A Search For Relativistic Ejecta In A Sample Of Ztf Broad-Lined Type Ic Supernovae, Alessandra Corsi, Anna Y.Q. Ho, S. Bradley Cenko, Shrinivas R. Kulkarni, Shreya Anand, Sheng Yang, Jesper Sollerman, Gokul P. Srinivasaragavan, Conor M.B. Omand, Arvind Balasubramanian, Dale A. Frail, Christoffer Fremling, Daniel A. Perley, Yuhan Yao, Aishwarya S. Dahiwale, Kishalay De, Alison Dugas, Matthew Hankins, Jacob Jencson, Mansi M. Kasliwal, Anastasios Tzanidakis, Eric C. Bellm, Russ R. Laher, Frank J. Masci, Josiah N. Purdum, Nicolas Regnault

Michigan Tech Publications, Part 2

The dividing line between gamma-ray bursts (GRBs) and ordinary stripped-envelope core-collapse supernovae (SNe) is yet to be fully understood. Observationally mapping the variety of ejecta outcomes (ultrarelativistic, mildly relativistic, or nonrelativistic) in SNe of Type Ic with broad lines (Ic - BL) can provide a key test to stellar explosion models. However, this requires large samples of the rare SN Ic - BL events with follow-up observations in the radio, where fast ejecta can be probed largely free of geometry and viewing angle effects. Here, we present the results of a radio (and X-ray) follow-up campaign of 16 SNe Ic …


Single-Mode Quasi Pt-Symmetric Laser With High Power Emission, Enes Şeker, Babak Olyaeefar, Khalil Dadashi, Serdar Şengül, Mohammad Hosain Teimourpour, Ramy El-Ganainy, Abdullah Demir Jun 2023

Single-Mode Quasi Pt-Symmetric Laser With High Power Emission, Enes Şeker, Babak Olyaeefar, Khalil Dadashi, Serdar Şengül, Mohammad Hosain Teimourpour, Ramy El-Ganainy, Abdullah Demir

Michigan Tech Publications

Large-area lasers are practical for generating high output powers. However, this often comes at the expense of lower beam quality due to the introduction of higher-order modes. Here, we experimentally demonstrate a new type of electrically pumped, large-area edge-emitting lasers that exhibit a high power emission (∼ 0.4 W) and a high-quality beam (M ∼ 1.25). These favorable operational characteristics are enabled by establishing a quasi PT-symmetry between the second-order mode of a large area two-mode laser cavity and that of a single-mode auxiliary partner cavity, i.e., by implementing a partial isospectrality between the two coupled cavities. This in turn …


Limits On Leptonic Tev Emission From The Cygnus Cocoon With Swift-Xrt, David Guevel, Andrew Beardmore, Kim L. Page, Amy Lien, Ke Fang, Luigi Tibaldo, Sabrina Casanova, Petra Huentemeyer Jun 2023

Limits On Leptonic Tev Emission From The Cygnus Cocoon With Swift-Xrt, David Guevel, Andrew Beardmore, Kim L. Page, Amy Lien, Ke Fang, Luigi Tibaldo, Sabrina Casanova, Petra Huentemeyer

Michigan Tech Publications

3-ray observations of the Cygnus Cocoon, an extended source surrounding the Cygnus X star-forming region, suggest the presence of a cosmic-ray accelerator reaching energies up to a few PeV. The very-high-energy (VHE, 0.1-100 TeV) 3-ray emission may be explained by the interaction of cosmic-ray hadrons with matter inside the Cocoon, but an origin of inverse Compton radiation by relativistic electrons cannot be ruled out. Inverse Compton 3-rays at VHE are accompanied by synchrotron radiation peaked in X-rays. Hence, X-ray observations may probe the electron population and magnetic field of the source. We observed 11 fields in or near the Cygnus …


Learning Neutrino Effects In Cosmology With Convolutional Neural Network, Elena Giusarma, Mauricio Reyes, Francisco Villaescusa-Navarro, Siyu He, Shirley Ho, Chang Hoon Hahn Jun 2023

Learning Neutrino Effects In Cosmology With Convolutional Neural Network, Elena Giusarma, Mauricio Reyes, Francisco Villaescusa-Navarro, Siyu He, Shirley Ho, Chang Hoon Hahn

Michigan Tech Publications

Measuring the sum of the three active neutrino masses, M ν , is one of the most important challenges in modern cosmology. Massive neutrinos imprint characteristic signatures on several cosmological observables, in particular, on the large-scale structure of the universe. In order to maximize the information that can be retrieved from galaxy surveys, accurate theoretical predictions in the nonlinear regime are needed. Currently, one way to achieve those predictions is by running cosmological numerical simulations. Unfortunately, producing those simulations requires high computational resources—several hundred to thousand core hours for each neutrino mass case. In this work, we propose a new …


Constraining The Sources Of Ultra-High-Energy Cosmic Rays Across And Above The Ankle With The Spectrum And Composition Data Measured At The Pierre Auger Observatory, A. Abdul Halim, P. Abreu, M. Aglietta, I. Allekotte, K. Almeida Cheminant, A. Almela, B. Fick, D. Nitz, Et Al. May 2023

Constraining The Sources Of Ultra-High-Energy Cosmic Rays Across And Above The Ankle With The Spectrum And Composition Data Measured At The Pierre Auger Observatory, A. Abdul Halim, P. Abreu, M. Aglietta, I. Allekotte, K. Almeida Cheminant, A. Almela, B. Fick, D. Nitz, Et Al.

Michigan Tech Publications

In this work we present the interpretation of the energy spectrum and mass composition data as measured by the Pierre Auger Collaboration above 6 × 1017 eV. We use an astrophysical model with two extragalactic source populations to model the hardening of the cosmic-ray flux at around 5 × 1018 eV (the so-called "ankle" feature) as a transition between these two components. We find our data to be well reproduced if sources above the ankle emit a mixed composition with a hard spectrum and a low rigidity cutoff. The component below the ankle is required to have a very soft …


Search For Photons Above 1019ev With The Surface Detector Of The Pierre Auger Observatory, P. Abreu, M. Aglietta, I. Allekotte, K. Almeida Cheminant, A. Almela, J. Alvarez-Muñiz, B. Fick, D. Nitz, I. Norwood, A. Puyleart, Et Al. May 2023

Search For Photons Above 1019ev With The Surface Detector Of The Pierre Auger Observatory, P. Abreu, M. Aglietta, I. Allekotte, K. Almeida Cheminant, A. Almela, J. Alvarez-Muñiz, B. Fick, D. Nitz, I. Norwood, A. Puyleart, Et Al.

Michigan Tech Publications

We use the surface detector of the Pierre Auger Observatory to search for air showers initiated by photons with an energy above 1019 eV. Photons in the zenith angle range from 30° to 60° can be identified in the overwhelming background of showers initiated by charged cosmic rays through the broader time structure of the signals induced in the water-Cherenkov detectors of the array and the steeper lateral distribution of shower particles reaching ground. Applying the search method to data collected between January 2004 and June 2020, upper limits at 95% CL are set to an E-2 diffuse flux of …


An Intercomparison Of Large-Eddy Simulations Of A Convection Cloud Chamber Using Haze-Capable Bin And Lagrangian Cloud Microphysics Schemes, Fan Yang, Fabian Hoffmann, Raymond Shaw, Mikhail Ovchinnikov, Andrew M. Vogelmann May 2023

An Intercomparison Of Large-Eddy Simulations Of A Convection Cloud Chamber Using Haze-Capable Bin And Lagrangian Cloud Microphysics Schemes, Fan Yang, Fabian Hoffmann, Raymond Shaw, Mikhail Ovchinnikov, Andrew M. Vogelmann

Michigan Tech Publications

Recent in situ observations show that haze particles exist in a convection cloud chamber. The microphysics schemes previously used for large-eddy simulations of the cloud chamber could not fully resolve haze particles and the associated processes, including their activation and deactivation. Specifically, cloud droplet activation was modeled based on Twomey-type parameterizations, wherein cloud droplets were formed when a critical supersaturation for the available cloud condensation nuclei (CCN) was exceeded and haze particles were not explicitly resolved. Here, we develop and adapt haze-capable bin and Lagrangian microphysics schemes to properly resolve the activation and deactivation processes. Results are compared with the …


Constraining The Sources Of Ultra-High-Energy Cosmic Rays Across And Above The Ankle With The Spectrum And Composition Data Measured At The Pierre Auger Observatory, A. Abdul Halim, P. Abreu, M. Aglietta, I. Allekotte, K. Almeida Cheminant, A. Almela, B. Fick, D. Nitz, I. Norwood, A. Puyleart, Et. Al May 2023

Constraining The Sources Of Ultra-High-Energy Cosmic Rays Across And Above The Ankle With The Spectrum And Composition Data Measured At The Pierre Auger Observatory, A. Abdul Halim, P. Abreu, M. Aglietta, I. Allekotte, K. Almeida Cheminant, A. Almela, B. Fick, D. Nitz, I. Norwood, A. Puyleart, Et. Al

Michigan Tech Publications

In this work we present the interpretation of the energy spectrum and mass composition data as measured by the Pierre Auger Collaboration above 6 × 1017 eV. We use an astrophysical model with two extragalactic source populations to model the hardening of the cosmic-ray flux at around 5 × 1018 eV (the so-called "ankle"feature) as a transition between these two components. We find our data to be well reproduced if sources above the ankle emit a mixed composition with a hard spectrum and a low rigidity cutoff. The component below the ankle is required to have a very soft spectrum …


The Camels Project: Public Data Release, Francisco Villaescusa-Navarro, Shy Genel, Daniel Anglés-Alcázar, Lucia A. Perez, Pablo Villanueva-Domingo, Digvijay Wadekar, Helen Shao, Faizan G. Mohammad, Sultan Hassan, Emily Moser, Erwin T. Lau, Luis Fernando Machado Poletti Valle, Andrina Nicola, Leander Thiele, Yongseok Jo, Oliver H.E. Philcox, Benjamin D. Oppenheimer, Megan Tillman, Chang Hoon Hahn, Neerav Kaushal, Et Al. Apr 2023

The Camels Project: Public Data Release, Francisco Villaescusa-Navarro, Shy Genel, Daniel Anglés-Alcázar, Lucia A. Perez, Pablo Villanueva-Domingo, Digvijay Wadekar, Helen Shao, Faizan G. Mohammad, Sultan Hassan, Emily Moser, Erwin T. Lau, Luis Fernando Machado Poletti Valle, Andrina Nicola, Leander Thiele, Yongseok Jo, Oliver H.E. Philcox, Benjamin D. Oppenheimer, Megan Tillman, Chang Hoon Hahn, Neerav Kaushal, Et Al.

Michigan Tech Publications

The Cosmology and Astrophysics with Machine Learning Simulations (CAMELS) project was developed to combine cosmology with astrophysics through thousands of cosmological hydrodynamic simulations and machine learning. CAMELS contains 4233 cosmological simulations, 2049 N-body simulations, and 2184 state-of-the-art hydrodynamic simulations that sample a vast volume in parameter space. In this paper, we present the CAMELS public data release, describing the characteristics of the CAMELS simulations and a variety of data products generated from them, including halo, subhalo, galaxy, and void catalogs, power spectra, bispectra, Lyα spectra, probability distribution functions, halo radial profiles, and X-rays photon lists. We also release over 1000 …