Open Access. Powered by Scholars. Published by Universities.®

Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 6 of 6

Full-Text Articles in Physics

Temperature Dependent Protein-Chromophore Hydrogen Bond Dynamics In The Far-Red Fluorescent Proteins By Using Molecular Dynamics Simulation And Quantum Calculationtemperature Dependent Protein-Chromophore Hydrogen Bond Dynamics In The Far-Red Fluorescent Proteins By Using Molecular Dynamics Simulation And Quantum Calculation, Chandra Prasad Dhakal Nov 2021

Temperature Dependent Protein-Chromophore Hydrogen Bond Dynamics In The Far-Red Fluorescent Proteins By Using Molecular Dynamics Simulation And Quantum Calculationtemperature Dependent Protein-Chromophore Hydrogen Bond Dynamics In The Far-Red Fluorescent Proteins By Using Molecular Dynamics Simulation And Quantum Calculation, Chandra Prasad Dhakal

FIU Electronic Theses and Dissertations

Fluorescent proteins are valuable tools as biochemical markers in molecular and cell biology research for studying cellular processes. Red Fluorescent Proteins (RFPs) are highly desirable for in vivo applications in living cell imaging because they absorb and emit light in the red region of the spectrum where cellular autofluorescence. Naturally occurring fluorescent proteins with emission peaks in this region of the spectrum occur in dimeric or tetrameric forms. For their use as biochemical markers, several monomeric variants of RFP have been developed which include mCherry, dsRed, and mStrawberry. Far red-emitting FPs with large Stokes shift are especially valuables for in …


Optical Two-Dimensional Coherent Spectroscopy Of Many-Body Dynamics In Quantum Materials, Maria Fernanda Munoz Aug 2021

Optical Two-Dimensional Coherent Spectroscopy Of Many-Body Dynamics In Quantum Materials, Maria Fernanda Munoz

FIU Electronic Theses and Dissertations

Since the rise of the concept of quantum materials (QM), these materials described as many-body quantum systems (interacting atoms, molecules, or electrons) have been suitable for many optoelectronic and quantum applications. Additionally, there has been significant interest in the research of QM to understand the underlying physics behind their extraordinary optical properties. Examples of QM are ultracold atoms, layered 2D semiconductors, supramolecular materials, and more. In 2012, a high energy conversion efficiency of over 10% was reported for the first time for metal-halide perovskite (MHP) solar cells, opening a new era for photovoltaics research. The reported efficiencies have been improved …


Probing The Structure Of Deuteron At Very Short Distances, Frank Vera Jul 2021

Probing The Structure Of Deuteron At Very Short Distances, Frank Vera

FIU Electronic Theses and Dissertations

We study the electro-disintegration of deuteron at quasi-elastic kinematics and high transferred momentum as a probe for the short distance structure in nuclei. In this reaction, an electron hits a nucleus of deuterium, which breaks up into a pair of nucleons (proton-neutron). We focus our attention on events where fast nucleons emerge, corresponding to nuclear configurations where the bound nucleons have a high relative momentum (exceeding 700 MeV/c). The present research is relevant to physical systems where high-density nuclear matter is present. This condition covers a wide range of physics, from neutron stars to nuclei stability and the repulsive nuclear …


A Study Of Magnetism And Possible Mixed-State Superconductivity In Phosphorus-Doped Graphene, Julian E. Gil Pinzon Jun 2021

A Study Of Magnetism And Possible Mixed-State Superconductivity In Phosphorus-Doped Graphene, Julian E. Gil Pinzon

FIU Electronic Theses and Dissertations

Evidence of superconducting vortices, and consequently mixed-state superconductivity, has been observed in phosphorus-doped graphene at temperatures as high as 260 K. The evidence includes transport measurements in the form of resistance versus temperature curves, and magnetic measurements in the form of susceptibility and magnetic Nernst effect measurements. The drops in resistance, periodic steps in resistance, the appearance of Nernst peaks and hysteresis all point to phosphorus-doped graphene having a broad resistive region due to flux flow as well as a Berezinskii-Kosterlitz-Thouless (BKT) transition at lower temperatures.

The observation of irreversible behavior in phosphorus-doped graphene under the influence of a thermal …


Structural Dynamics Of Membrane Interacting Viral Proteins, Nisha Bhattarai May 2021

Structural Dynamics Of Membrane Interacting Viral Proteins, Nisha Bhattarai

FIU Electronic Theses and Dissertations

Viruses do not possess complete cellular machinery but have the ability to reproduce by utilizing cellular machinery inside host cells. They are nanoscale machines that rapidly modify (evolve) their molecular components to cause disease and death. Therefore, emergence of deadly infectious viruses is a monumental health concern and understanding how viruses are able to enter, replicate, assemble and egress from the host cell is important to mitigate the threat.

A fully active, infectious viral structure is known as a virion. A virion contains genetic material and is enclosed by a capsid. The capsid is a protein shell and some viruses …


Electron Field Emission And Electrochemical Lithiation Properties Of Vertically Aligned Carbon Nanotube Arrays Grown Directly On Metal Substrates, Arun Thapa Mar 2021

Electron Field Emission And Electrochemical Lithiation Properties Of Vertically Aligned Carbon Nanotube Arrays Grown Directly On Metal Substrates, Arun Thapa

FIU Electronic Theses and Dissertations

Carbon nanotubes (CNTs) represent one of the critical inventions that have triggered new science and technology in many fields because of their distinctive mechanical, thermal, electrical, electrochemical, and optical properties. Despite the tremendous potential of CNTs, challenges in synthesizing and processing continue to hinder their applications. This dissertation is devoted to synthesizing vertically aligned CNT arrays on metal substrates via plasma-enhanced chemical vapor deposition and the study of their electron field emission (FE) and electrochemical lithiation properties.

Vertically aligned CNTs (VACNTs) are promising electron field emitters for vacuum micro/nano-electronics. Improved control over the morphology and a successful direct-growth of the …