Open Access. Powered by Scholars. Published by Universities.®

Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

PDF

Clemson University

Theses/Dissertations

Discipline
Keyword
Publication Year
Publication

Articles 1 - 30 of 93

Full-Text Articles in Physics

Radiation Exposure Calibration Of The Al2o3:C With Radium-226 And Cesium-137 Using The Osl Method, Selma Tepeli Aydin Dec 2023

Radiation Exposure Calibration Of The Al2o3:C With Radium-226 And Cesium-137 Using The Osl Method, Selma Tepeli Aydin

All Theses

Optically stimulated luminescence (OSL) dosimetry was utilized to calibrate Al2O3:C powder dosimeters, available commercially as the nanoDot® from Landauer Inc., and compare the dosimeter response to radium-226 (226Ra) and cesium-137 (137Cs). The signal from the OSL was quantified using a microSTARii® OSL reader also produced by Landauer Inc. Dose-response curves were developed for 226Ra and 137Cs experiments (5 dosimeters each) at thirteen absorbed doses. Individual dosimeter response was tracked by serial number. Linear regression analysis was performed to determine if there were significant differences between the intercepts of the …


Aspects Of Stochastic Geometric Mechanics In Molecular Biophysics, David Frost Dec 2023

Aspects Of Stochastic Geometric Mechanics In Molecular Biophysics, David Frost

All Dissertations

In confocal single-molecule FRET experiments, the joint distribution of FRET efficiency and donor lifetime distribution can reveal underlying molecular conformational dynamics via deviation from their theoretical Forster relationship. This shift is referred to as a dynamic shift. In this study, we investigate the influence of the free energy landscape in protein conformational dynamics on the dynamic shift by simulation of the associated continuum reaction coordinate Langevin dynamics, yielding a deeper understanding of the dynamic and structural information in the joint FRET efficiency and donor lifetime distribution. We develop novel Langevin models for the dye linker dynamics, including rotational dynamics, based …


Controlled Manipulation And Transport By Microswimmers In Stokes Flows, Jake Buzhardt Dec 2023

Controlled Manipulation And Transport By Microswimmers In Stokes Flows, Jake Buzhardt

All Dissertations

Remotely actuated microscale swimming robots have the potential to revolutionize many aspects of biomedicine. However, for the longterm goals of this field of research to be achievable, it is necessary to develop modelling, simulation, and control strategies which effectively and efficiently account for not only the motion of individual swimmers, but also the complex interactions of such swimmers with their environment including other nearby swimmers, boundaries, other cargo and passive particles, and the fluid medium itself. The aim of this thesis is to study these problems in simulation from the perspective of controls and dynamical systems, with a particular focus …


Nonlinear Charge And Spin Currents In Non-Centrosymmetric Electron Systems, Aniruddha Pan Aug 2023

Nonlinear Charge And Spin Currents In Non-Centrosymmetric Electron Systems, Aniruddha Pan

All Dissertations

In this thesis, we discuss the existence of spin and charge currents in systems with broken spin inversion symmetry proportional to the magnitude square of the driving electric and thermal fields. This outcome is predicated on symmetry considerations in the momentum space, whereby the product between the current operator and the out-of-equilibrium distribution function has to be even.

First, we derive the second-order correction to the particle distribution function $\delta f^{(2)}$ in a semi-classical approximation, considering the local change in the equilibrium distribution function caused by external fields. Our approach departs significantly from the previous theory where $\delta f^{(2)}$ is …


Study Of Highly Charged Ion Charge Exchange With Applications To X-Ray Astrophysics, Richard Mattish Aug 2023

Study Of Highly Charged Ion Charge Exchange With Applications To X-Ray Astrophysics, Richard Mattish

All Dissertations

Highly charged ions (HCIs) exist in many hot astrophysical environments where they play an important role in plasma dynamics. Charge exchange involving highly charged ions has been shown to be responsible for many observed X-ray emissions from a variety of astrophysical sources. Proper modeling of these environments requires an understanding of this process, including the electronic structure of each ion species as well as their charge exchange cross sections. This dissertation investigates charge exchange processes with highly charged ions which are present in astrophysical environments via a laboratory-based study.

The Clemson University electron beam ion trap (CUEBIT) laboratory was utilized …


The Influence Of Allostery Governing The Changes In Protein Dynamics Upon Substitution, Joseph Hess Aug 2023

The Influence Of Allostery Governing The Changes In Protein Dynamics Upon Substitution, Joseph Hess

All Dissertations

The focus of this research is to investigate the effects of allostery on the function/activity of an enzyme, human immunodeficiency virus type 1 (HIV-1) protease, using well-defined statistical analyses of the dynamic changes of the protein and variants with unique single point substitutions 1. The experimental data1 evaluated here only characterized HIV-1 protease with one of its potential target substrates. Probing the dynamic interactions of the residues of an enzyme and its variants can offer insight of the developmental importance for allosteric signaling and their connection to a protein’s function. The realignment of the secondary structure elements can …


Hybridly Integrated Semiconductor Lasers And Amplifiers On Iii-V/Si3n4 Platform For Beam Combining And Other Advanced Applications, Siwei Zeng Aug 2023

Hybridly Integrated Semiconductor Lasers And Amplifiers On Iii-V/Si3n4 Platform For Beam Combining And Other Advanced Applications, Siwei Zeng

All Dissertations

Photonic integrated circuits (PICs) are devices that integrate multiple photonic functions on a small chip and allow for accurate dimension control and massive production. Similar to electronic integrated circuits, PICs can significantly reduce the system cost, size, weight, and operation power (CSWaP). Recently, the PIC technology has transformed many optical technologies which traditionally rely on tabletop systems and bulky components, such as optical interconnects, nonlinear optics, and quantum photonics, into a chip-scale platform. This device and system miniaturization has successfully led to a wide range of practical applications in computing, sensing, spectroscopy, and communication. However, the traditional passive PIC platform …


The Search For Heavily Obscured Active Galactic Nuclei In The Local Universe, Ross Silver May 2023

The Search For Heavily Obscured Active Galactic Nuclei In The Local Universe, Ross Silver

All Dissertations

Active galactic nuclei (AGN) are supermassive black holes (SMBHs) in the center of galaxies that accrete surrounding gas and emit across the entire electromagnetic spectrum. They are the most energetic persistent emitters in the Universe, capable of outshining their host galaxies despite their emission originating from a region smaller than our Solar System. AGN were some of the first sources discovered that helped teach us that there were galaxies outside of our own, and they proved the existence of black holes. Moreover, AGN can give us valuable insights into other branches of astrophysics. For example, they can be used to …


Machine Learning-Based Data And Model Driven Bayesian Uncertanity Quantification Of Inverse Problems For Suspended Non-Structural System, Zhiyuan Qin May 2023

Machine Learning-Based Data And Model Driven Bayesian Uncertanity Quantification Of Inverse Problems For Suspended Non-Structural System, Zhiyuan Qin

All Dissertations

Inverse problems involve extracting the internal structure of a physical system from noisy measurement data. In many fields, the Bayesian inference is used to address the ill-conditioned nature of the inverse problem by incorporating prior information through an initial distribution. In the nonparametric Bayesian framework, surrogate models such as Gaussian Processes or Deep Neural Networks are used as flexible and effective probabilistic modeling tools to overcome the high-dimensional curse and reduce computational costs. In practical systems and computer models, uncertainties can be addressed through parameter calibration, sensitivity analysis, and uncertainty quantification, leading to improved reliability and robustness of decision and …


Studies Of The Ionosphere-Thermosphere Responses To Multi-Scale Energy Deposition Processes, Haonan Wu May 2023

Studies Of The Ionosphere-Thermosphere Responses To Multi-Scale Energy Deposition Processes, Haonan Wu

All Dissertations

The Ionosphere-Thermosphere (I-T) system is greatly affected by the magnetospheric energy deposition from above and subjected to forcing from the lower atmosphere simultaneously. A central problem in studying the coupled I-T system is to analyze the multi-scale processes naturally embedded in both ways. Magnetospheric energy input such as auroral precipitation and electric field demonstrates multi-scale structures during magnetic storms, resulting in multi-scale I-T responses when deposited into the I-T system. To better quantify the multi-scale aurora and electric field, we developed a new data assimilation model based on a multi-resolution Gaussian process model to synthesize empirical models and observational data …


Apparatus And Instrumentation Design For Investigation Of Surface Impact Effects On Superconductivity, Austin Back May 2023

Apparatus And Instrumentation Design For Investigation Of Surface Impact Effects On Superconductivity, Austin Back

All Theses

The effects of ion irradiation on the physical properties of materials make EBITs an invaluable tool for many scientific and engineering fields. Many experiments rely on the use of these lab setups to test for device reliability, explore surface physics phenomena, and replicate the environment for many physical systems that are not readily accessible. We seek to extend the capabilities of these experiments using the CUEBIT and a new sample holder installed in section 3.

This thesis begins by presenting an overview of the CUEBIT and the basic operations of the equipment. This is followed by a brief explanation of …


The Characterization Of Atmospheric Turbulence And Its Effect On Laser Beam Propagation, Michael Cox May 2023

The Characterization Of Atmospheric Turbulence And Its Effect On Laser Beam Propagation, Michael Cox

All Theses

Having a controlled environment to measure atmospheric turbulence is essential to understanding its effects on different laser beam characteristics. The Clemson Variable Turbulence Generator (VTG) has the capability to propagate a laser beam up to 100 m and be able to dial many turbulence settings up to a heat flux of 357 W/m2. A high-speed camera, power detector, and high-resolution temperature probes characterize the VTG with theoretical turbulence spectrums. The exponent associated with the Rayleigh-Bénard (RB) temperature structure constant equation is studied. Two different laser beam profiles are used throughout this work: Gaussian and Asymmetric Perfect Vortex (APV). …


Oam-Based Wavelets In A High Speed Optical Probing System For Measuring The Angular Decomposition Of The Environment, Justin Free Dec 2022

Oam-Based Wavelets In A High Speed Optical Probing System For Measuring The Angular Decomposition Of The Environment, Justin Free

All Theses

This thesis presents the theoretical development of orbital angular momentum (OAM) based wavelets for the analysis of localized OAM information in space. An optical probing system for generating and detecting these wavelets is demonstrated; individual wavelets can scan the environment in 10µs or less. The probing system was applied to a three-dimensional atmospheric turbulence distribution to obtain a continuous wavelet transform of the angular information of the turbulent propagation path about a fixed radius. An entire continuous wavelet transform was measured in 3.8ms; the measurements are much faster than the turbulence and give insight into the short time scale of …


Quantum-Mechanical Evaluation Of Defects In Uranium-Bearing Materials, Megan Hoover Aug 2022

Quantum-Mechanical Evaluation Of Defects In Uranium-Bearing Materials, Megan Hoover

All Dissertations

Quantum-mechanical calculations using density functional theory with the generalized gradient approximation were employed to investigate the effects dopants have on the uranium dioxide (UO2) structure. Uraninite is a common U4+ mineral in the Earth's crust and an important material used to produce energy and medical isotopes. Though the incorporation mechanism remains unclear, divalent cations are known to incorporate into the uranium dioxide system. Three charge-balancing mechanisms were evaluated to achieve a net neutral system, including the substitution of (1) a divalent cation for a tetravalent uranium atom and oxygen atom; (2) two divalent cations for a tetravalent …


Electrical And Optical Characterization Of Two-Dimensional Semiconductors Using Ultrafast Spectroscopy, Pan Adhikari Aug 2022

Electrical And Optical Characterization Of Two-Dimensional Semiconductors Using Ultrafast Spectroscopy, Pan Adhikari

All Dissertations

The emergence of two-dimensional (2D) layered materials provides unprecedented opportunities for studying excitonic physics due to the strong Coulomb interaction between the electron-hole pair. Because of the reduced dimensionality and weak dielectric screening, the exciton is stable at room temperature, unlike bulk semiconductors. The evolution from low to high carrier density for optical gain in 2D semiconductors involves insulating exciton gas, exciton condensation, co-existence of various excitonic complexes, electron-hole plasmas (EHPs), or electron-hole liquids (EHLs), leading to the Mott transition. Strong interaction among the excitons, such as exciton-exciton annihilation (EEA), serves as a hot-carrier generation. A bound exciton dissociates into …


Revealing The Role Of Electrostatics In Molecular Recognition, Ion Binding And Ph-Dependent Phenomena, Mihiri Hewa Bosthanthirige Aug 2022

Revealing The Role Of Electrostatics In Molecular Recognition, Ion Binding And Ph-Dependent Phenomena, Mihiri Hewa Bosthanthirige

All Dissertations

In this dissertation, we study the role of electrostatics in molecular recognition, ion binding and pH-dependent phenomena. In this work that includes three different research projects, the Poisson-Boltzmann (PB) model is used to describe the biological system and Delphi (which is a popular tool for solving the PB equation (PBE)) to study the electrostatics of biomolecular systems.

Chapter two aims to investigate the role of electrostatic forces in molecular recognition. We calculated electrostatic forces between binding partners separated at various distances. To accomplish this goal, we developed a method to find an appropriate direction to move one chain of protein …


Controlled Manipulation Of Droplets On Fibers: Fundamentals And Printing Applications, Yueming Sun Aug 2022

Controlled Manipulation Of Droplets On Fibers: Fundamentals And Printing Applications, Yueming Sun

All Dissertations

In this dissertation, the drop interactions with a single fiber is discussed under an application angle for the development on new Drop-on-Demand (DOD) printhead using a fiber-in-a-tube platform[1] to print highly viscous materials[2]. To control the drop formation and manipulation on fiber, one needs to know how the fiber wetting properties and the fiber diameter influence drop formation. And then, one needs to know the effects of fiber movement in the device on drop formation. These two questions constitute the main theme of this dissertation.

Before this study, it was accepted that the liquids could not form axisymmetric droplets if …


Subwavelength Engineering Of Silicon Photonic Waveguides, Farhan Bin Tarik Aug 2022

Subwavelength Engineering Of Silicon Photonic Waveguides, Farhan Bin Tarik

All Dissertations

The dissertation demonstrates subwavelength engineering of silicon photonic waveguides in the form of two different structures or avenues: (i) a novel ultra-low mode area v-groove waveguide to enhance light-matter interaction; and (ii) a nanoscale sidewall crystalline grating performed as physical unclonable function to achieve hardware and information security. With the advancement of modern technology and modern supply chain throughout the globe, silicon photonics is set to lead the global semiconductor foundries, thanks to its abundance in nature and a mature and well-established industry. Since, the silicon waveguide is the heart of silicon photonics, it can be considered as the core …


In Situ Study Of Ultrafast Carrier Transport Dynamics In Perovskite Thin-Films, Kanishka Kobbekaduwa Aug 2022

In Situ Study Of Ultrafast Carrier Transport Dynamics In Perovskite Thin-Films, Kanishka Kobbekaduwa

All Dissertations

Perovskites are a novel class of materials that have piqued the interest of researchers in photovoltaics, photodetectors, and optoelectronics. In this study, we measure and elucidate in situ ultrafast carrier dynamics in both organic and inorganic, lead, and non-lead-based halide perovskite thin films using ultrafast photocurrent spectroscopy (UPCS) with a sub-25 ps time resolution. The UPCS technique enables us to define carrier transport dynamics in spatial, temporal, and energy landscapes via measurements at different electric fields, laser intensities, and temperatures. Here we explore and analyze solution-processed bulk MAPbI3 and nanocrystalline CsPbI3-based devices and novel non-lead double-layered perovskite …


Developing A Software Defined Radio Based Faraday Receiver, Alvaro J. Guerra Aug 2022

Developing A Software Defined Radio Based Faraday Receiver, Alvaro J. Guerra

All Theses

The ionosphere can be approximated as a magnetized plasma. This results in wave- particle interactions driving a large quantity of ionospheric phenomena. To understand these phenomena, it is important to quantify and measure certain key plasma parameters. One such parameter is electron density. The Faraday Experiment was developed for the purpose of measuring electron density in the D-region of the ionosphere. This experiment was made popular by Martin Friedrich in the 1970s and is currently one of the only ways to provide high resolution measurements of electron density in the D-region without actively disturbing the surrounding plasma. This thesis aims …


Porous Silicon Photonics For Label-Free Interferometric Biosensing And Flat Optics, Tahmid Hassan Talukdar May 2022

Porous Silicon Photonics For Label-Free Interferometric Biosensing And Flat Optics, Tahmid Hassan Talukdar

All Dissertations

This dissertation uses porous silicon as a material platform to explore novel optical effects in three domains: (i) It studies dispersion engineering in integrated waveguides to achieve high performance group index sensing. With proper design parameters, the sensor waveguides can theoretically achieve 6 times larger group index shift compared to the actual bulk effective refractive index shift. We demonstrate the guided mode confinement factor to be a key parameter in design and implementation of these waveguides. (ii) It explores multicolor laser illumination to experimentally demonstrate perceptually enhanced colorimetric sensing, overcoming the limitations faced by many contemporary colorimetric sensors. Our technique …


Optimization Of Modular, Long-Range, Ultra-Fast Optical Tweezers With Fluorescence Capabilities For Single-Molecule And Single-Cell Based Biophysical Measurements, Subash C. Godar May 2022

Optimization Of Modular, Long-Range, Ultra-Fast Optical Tweezers With Fluorescence Capabilities For Single-Molecule And Single-Cell Based Biophysical Measurements, Subash C. Godar

All Dissertations

An Optical tweezer is a tightly focused laser beam that applies and senses precise and localized optical force to a dielectric microsphere and offers a unique and effective tool for manipulating the single cell or cell components, including nucleotides and dynein motor proteins. Here, I used highly stabilized optomechanical components and ultra-sensitive detection modules to significantly improve the measurement capabilities over a wide range of temporal and spatial scales. I combined the optical tweezer-based force spectroscopy technique with fluorescence microscopy to develop an integrated high-resolution force-fluorescence system capable of measuring displacements at sub-nanometer, forces at sub-piconewton over a temporal range …


Extractive Membranes For The Detection And Screening Of Waterborne Plutonium, James Foster May 2022

Extractive Membranes For The Detection And Screening Of Waterborne Plutonium, James Foster

All Dissertations

The development of rapid screening tools for special nuclear materials remains a crucial focus for nonproliferation efforts. Traditional approaches for the analysis of trace-level Pu isotopes in water requires tedious and time-consuming sample preparation steps that do not lend well to expeditious screening. Therefore, a novel analytical method that combines both Pu concentration and source preparation into a single detection system would make for an invaluable tool for nuclear security applications. Extractive membranes absorbers can help to fulfill this role as they are capable of concentrating Pu to detectable limits while subsequently serving as alpha spectrometry sample sources. In Chapter …


Prediction Of Pathogenic Mutations In Spermine/Spermidine Synthases, Shannon Bonomi May 2022

Prediction Of Pathogenic Mutations In Spermine/Spermidine Synthases, Shannon Bonomi

All Theses

As genetic technology and information become continuously more sophisticated and applied to the prevention and treatment of diseases, the need to understand the effects of genetic variants becomes an important task with regards to assessing disease risk. In the specific case of intellectual disabilities, prenatal screenings is an important diagnostic tool that prepares families and health professionals for the arrival of a child who may need immediate, specialized care. Cell Free DNA screenings are routine for determining sex and provide the opportunity to discover genetic anomalies. However, this has little value unless mutations can be recognized as pathogenic and are …


Exploring The Glow Of The Universe In Gamma-Rays And Hunting Distant Agn, Changam Meenakshi Rajagopal May 2022

Exploring The Glow Of The Universe In Gamma-Rays And Hunting Distant Agn, Changam Meenakshi Rajagopal

All Dissertations

The entirety of the γ-ray radiation permeating our Universe is encoded in the extragalactic γ-ray background. This is a superposition of resolved sources, mostly powerful relativistic jets powered by supermassive black holes, i.e., blazars, and an unresolved isotropic component, aka, the diffuse isotropic gamma-ray background (IGRB). Studying the IGRB can help unveil its composition, as well as unearth multi-messenger relationships between the intensities of PeV neutrinos, ultra high energy cosmic rays (> 1018 eV), and sub-TeV γ-rays. The comparable energy budgets of these three phenomena (neutrinos, UHECR, and γ-rays) indicates a physical connection or a common source amongst them. On …


Supertertiary Structural Dynamics Modulate Function In Postsynaptic Density Protein 95, George L. Hamilton Iii May 2022

Supertertiary Structural Dynamics Modulate Function In Postsynaptic Density Protein 95, George L. Hamilton Iii

All Dissertations

Proteins, RNA, and DNA serve as the primary sub-cellular machinery that give rise to the necessary functions of life. The long-standing paradigm has been that the structures of biomolecules, or the arrangement of the subunits that make up a biomolecule, determine biological function. However, biomolecules are not static objects. Instead, they often undergo structural rearrangements that are crucial to enabling and regulating their functions. In my thesis I present several studies of the interplay between the structures, dynamics, and functions of biomolecules that combine experimental fluorescence spectroscopy and computational methods to probe these systems at the single-molecule level. In particular, …


Capillary Driven Transport In Soft Solids, Saiful Islam Tamim Dec 2021

Capillary Driven Transport In Soft Solids, Saiful Islam Tamim

All Dissertations

Soft solids, such as polymeric gels, are elastic materials that can be significantly deformed by capillary forces which act at the interface. The coupling between elasticity and capillarity is known as elastocapillarity and is useful to wide ranging applications, from drop pinchoff of bioinks for 3-D printing tissue scaffolds, to generating droplet patterns on microfluidic devices. In this dissertation, we develop mathematical models of elastocapillary driven motions in soft solids. The focus is on understanding the relevant physics in such complex phenomena, while also recovering the limiting cases of classical fluid mechanics and solid mechanics theories.

This dissertation investigates two …


On The Ground State And Evolution Of Structural And Transport Properties Of Tin Selenide, Yufei Liu Dec 2017

On The Ground State And Evolution Of Structural And Transport Properties Of Tin Selenide, Yufei Liu

All Dissertations

The recent surge of interest in tin selenide (SnSe) is due to the reported record-high thermoelectric figure of merit at elevated temperatures. While the researchers are exerting tremendous efforts to further improve the thermoelectric performance of SnSe via doping and nanostructuring, it is getting more and more apparent that SnSe is fascinating in many aspects of fundamental physics. SnSe is, in many aspects, an outlier of the current materials selection rules for high thermoelectric performance. Hence, answering why thermoelectric performance is high in SnSe should come before addressing how to further improve its thermoelectric performance. To this end, there are …


Vanadium Diselenide: On The Verge Of Charge Density Wave, Menghan Zhou Dec 2016

Vanadium Diselenide: On The Verge Of Charge Density Wave, Menghan Zhou

All Dissertations

Charge density wave (CDW) is a many-body state of matter in which both lattice and electron density are modulated by a new periodicity. CDW features discrete translational symmetry breaking, and mostly occurs in low-dimensional materials. Although CDW behaviors have been found in many materials, the underlying mechanism and the driving forces of CDW transition are still unclear. In particular, the origin of CDW in two-dimensional materials, especially in layered transition metal dicalchogenides (TMDCs), may be distinct from that in one-dimensional materials.

In this dissertation, the CDW transition in VSe2, a layered TMDC material, is explored. Density functional theory (DFT) calculations …


Scalable Synthesis And Energy Applications Of Defect Engineered Nano Materials, Mehmet Karakaya Dec 2015

Scalable Synthesis And Energy Applications Of Defect Engineered Nano Materials, Mehmet Karakaya

All Dissertations

Nanomaterials and nanotechnologies have attracted a great deal of attention in a few decades due to their novel physical properties such as, high aspect ratio, surface morphology, impurities, etc. which lead to unique chemical, optical and electronic properties. The awareness of importance of nanomaterials has motivated researchers to develop nanomaterial growth techniques to further control nanostructures properties such as, size, surface morphology, etc. that may alter their fundamental behavior. Carbon nanotubes (CNTs) are one of the most promising materials with their rigidity, strength, elasticity and electric conductivity for future applications. Despite their excellent properties explored by the abundant research works, …