Open Access. Powered by Scholars. Published by Universities.®

Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 27 of 27

Full-Text Articles in Physics

Positron Emission Tomography In Oncology And Environmental Science, Samantha Delaney Jun 2024

Positron Emission Tomography In Oncology And Environmental Science, Samantha Delaney

Dissertations, Theses, and Capstone Projects

The last half century has played witness to the onset of molecular imaging for the clinical assessment of physiological targets. While several medical imaging modalities allow for the visualization of the functional and anatomical properties of humans and living systems, few offer accurate quantitation and the ability to detect biochemical processes with low-administered drug mass doses. This limits how physicians and scientists may diagnose and treat medical issues, such as cancer, disease, and foreign agents.

A promising alternative to extant invasive procedures and suboptimal imaging modalities to assess the nature of a biological environment is the use of positron emission …


Quantifying Temperature-, Pressure-, And Nuclear Quantum Effects On Hydrophobic And Hydrophilic Water-Mediated Interactions, Justin T. Engstler Sep 2023

Quantifying Temperature-, Pressure-, And Nuclear Quantum Effects On Hydrophobic And Hydrophilic Water-Mediated Interactions, Justin T. Engstler

Dissertations, Theses, and Capstone Projects

Water-mediated interactions (WMIs) are responsible for diverse processes in aqueous solutions, including protein folding and nanoparticle aggregation. WMI may be affected by changes in temperature and pressure, and hence, they can alter chemical/physical processes that occur in aqueous environments. Traditionally, attention has been focused on hydrophobic interactions while, in comparison, the role of hydrophilic and hybrid (hydrophobic–hydrophilic) interactions have been mostly overlooked. Here, we study the role of T and P on the WMI between nanoscale (i) hydrophobic–hydrophobic, (ii) hydrophilic–hydrophilic, and (iii) hydrophilic–hydrophobic pairs of (hydroxylated/non-hydroxylated) graphene-based surfaces. We find that hydrophobic, hydrophilic, and hybrid interactions are all sensitive to …


Microstructural Origin Of The High-Energy Storage Performance In Epitaxial Lead-Free Ba(Zr 0.2 Ti 0.8 )O 3 Thick Films, Jun Ouyang, Xianke Wang, Changtao Shao, Hongbo Cheng, Hanfei Zhu, Yuhang Ren Sep 2022

Microstructural Origin Of The High-Energy Storage Performance In Epitaxial Lead-Free Ba(Zr 0.2 Ti 0.8 )O 3 Thick Films, Jun Ouyang, Xianke Wang, Changtao Shao, Hongbo Cheng, Hanfei Zhu, Yuhang Ren

Publications and Research

In our previous work, epitaxial Ba(Zr 0.2 Ti 0.8 )O 3 thick films (~1–2 μ m) showed an excellent energy storage performance with a large recyclable energy density (~58 J/cc) and a high energy efficiency (~92%), which was attributed to a nanoscale entangled heterophase polydomain structure. Here, we propose a detailed analysis of the structure–property relationship in these film materials, using an annealing process to illustrate the effect of nanodomain entanglement on the energy storage performance. It is revealed that an annealing-induced stress relaxation led to the segregation of the nanodomains (via detailed XRD analyses), and a degraded energy storage …


Engineering Rare-Earth Based Color Centers In Wide Bandgap Semiconductors For Quantum And Nanoscale Applications, Gabriel I. López-Morales Sep 2022

Engineering Rare-Earth Based Color Centers In Wide Bandgap Semiconductors For Quantum And Nanoscale Applications, Gabriel I. López-Morales

Dissertations, Theses, and Capstone Projects

For many years, atomic point-defects have been readily used to tune the bulk properties of solid-state crystalline materials, for instance, through the inclusion of elemental impurities (doping) during growth, or post-processing treatments such as ion bombardment or high-energy irradiation. Such atomic point-defects introduce local ‘incompatible’ chemical interactions with the periodic atomic arrangement that makes up the crystal, resulting for example in localized electronic states due to dangling bonds or excess of electrons. When present in sufficient concentrations, the defects interact collectively to alter the overall bulk properties of the host material. In the low concentration limit, however, point-defects can serve …


The Interaction Of Different Primary Producers And Physical And Chemical Dynamics Of An Urban Shallow Lake, Majid Sahin Sep 2022

The Interaction Of Different Primary Producers And Physical And Chemical Dynamics Of An Urban Shallow Lake, Majid Sahin

Dissertations, Theses, and Capstone Projects

An artificial urban shallow lake, Prospect Park Lake (PPL), is situated on a terminal moraine in Brooklyn New York, and supplied with municipal water treated with ortho-phosphates. The constant input of the phosphate nutrient is the primary source of eutrophication in the lake. The numerous pools along the water course houses various aquatic phototrophs, which influence the water quality and the state of the system, driving conditions into favoring the survival of their species. In the first half of the dissertation, the focus of the project is on analyzing how the different primary producers in different regions of PPL affect …


Molecular Dynamics Simulations Of Self-Assemblies In Nature And Nanotechnology, Phu Khanh Tang Sep 2021

Molecular Dynamics Simulations Of Self-Assemblies In Nature And Nanotechnology, Phu Khanh Tang

Dissertations, Theses, and Capstone Projects

Nature usually divides complex systems into smaller building blocks specializing in a few tasks since one entity cannot achieve everything. Therefore, self-assembly is a robust tool exploited by Nature to build hierarchical systems that accomplish unique functions. The cell membrane distinguishes itself as an example of Nature’s self-assembly, defining and protecting the cell. By mimicking Nature’s designs using synthetically designed self-assemblies, researchers with advanced nanotechnological comprehension can manipulate these synthetic self-assemblies to improve many aspects of modern medicine and materials science. Understanding the competing underlying molecular interactions in self-assembly is always of interest to the academic scientific community and industry. …


Evaluation Of Log P, Pka, And Log D Predictions From The Sampl7 Blind Challenge, Teresa Danielle Bergazin, Nicolas Tielker, Yingying Zhang, Junjun Mao, M. R. Gunner, Karol Francisco, Carlo Ballatore, Stefan M. Kast, David L. Mobley Jun 2021

Evaluation Of Log P, Pka, And Log D Predictions From The Sampl7 Blind Challenge, Teresa Danielle Bergazin, Nicolas Tielker, Yingying Zhang, Junjun Mao, M. R. Gunner, Karol Francisco, Carlo Ballatore, Stefan M. Kast, David L. Mobley

Publications and Research

The Statistical Assessment of Modeling of Proteins and Ligands (SAMPL) challenges focuses the computational modeling community on areas in need of improvement for rational drug design. The SAMPL7 physical property challenge dealt with prediction of octanol-water partition coefficients and pKa for 22 compounds. The dataset was composed of a series of N-acylsulfonamides and related bioisosteres. 17 research groups participated in the log P challenge, submitting 33 blind submissions total. For the pKa challenge, 7 different groups participated, submitting 9 blind submissions in total. Overall, the accuracy of octanol-water log P predictions in the SAMPL7 challenge was …


Alternative View Of Oxygen Reduction On Porous Carbon Electrocatalysts: The Substance Of Complex Oxygen-Surface Interactions, Giacomo De Falco, Marc Florent, Jacek Jagiello, Yongqiang Cheng, Luke L. Daemen, Anibal J. Ramirez-Cuesta, Teresa J. Bandosz Mar 2021

Alternative View Of Oxygen Reduction On Porous Carbon Electrocatalysts: The Substance Of Complex Oxygen-Surface Interactions, Giacomo De Falco, Marc Florent, Jacek Jagiello, Yongqiang Cheng, Luke L. Daemen, Anibal J. Ramirez-Cuesta, Teresa J. Bandosz

Publications and Research

Electrochemical oxygen reduction reaction (ORR) is an important energy-related process requiring alternative catalysts to expensive platinum-based ones. Although recently some advancements in carbon catalysts have been reported, there is still a lack of understanding which surface features might enhance their efficiency for ORR. Through a detailed study of oxygen adsorption on carbon molecular sieves and using inelastic neutron scattering, we demonstrated here that the extent of oxygen adsorption/interactions with surface is an important parameter affecting ORR. It was found that both the strength of O2 physical adsorption in small pores and its specific interactions with surface ether functionalities in the …


Role Of Protonation State Changes And Hydrogen Bonding Around The Oxygen Evolving Complex Of Photosystem Ii, Divya Matta Feb 2021

Role Of Protonation State Changes And Hydrogen Bonding Around The Oxygen Evolving Complex Of Photosystem Ii, Divya Matta

Dissertations, Theses, and Capstone Projects

The mechanism of natural photosynthesis involves the use of solar energy to produce O2 we breathe and food and fuel we intake. This process results in the biological oxidation of water that takes place at room temperature, neutral pH using earth abundant elements Ca and Mn. Understanding how this challenging chemical reaction occurs in photosynthesis can be useful for designing better artificial photosynthetic complexes that can be used as biofuels. My doctoral work is to study the deprotonation and oxidation events elucidating the mechanistic details of proton coupled electron transfer reaction in a photosynthetic protein.

The O2 evolution …


Using The Marcus Inverted Region And Artificial Cofactors To Create A Charge Separated State In De Novo Designed Proteins, Eskil Me Andersen Feb 2021

Using The Marcus Inverted Region And Artificial Cofactors To Create A Charge Separated State In De Novo Designed Proteins, Eskil Me Andersen

Dissertations, Theses, and Capstone Projects

To create an efficient de novo photosynthetic protein it is important to create long lived charge separated states. Achieving stable charge separation leads to an increase in the efficiency of the photosynthetic reaction which in turn leads to higher yields of end products, such as biofuels, electrical charge, or synthetic chemicals. In an attempt to create charge separated states in de novo proteins we hypothesized that we could engineer the free energy gaps in the proteins from excited primary donor (PD) to acceptor (A), and A back to ground state PD such that the forward electron transfer (ET) would be …


Interactions Of Organic Fluorophores With Plasmonic Surface Lattice Resonances, Robert J. Collison Feb 2021

Interactions Of Organic Fluorophores With Plasmonic Surface Lattice Resonances, Robert J. Collison

Dissertations, Theses, and Capstone Projects

It is common knowledge that metals, alloys and pure elements alike, are lustrous and reflective, the more so when a metal surface is flat, polished, and free from oxidation and surface fouling. However, some metals reflect visible light, in the 380 nm to 740 nm range of wavelengths, much more strongly than others. In particular, some metals reflect wavelengths in certain portions of the ultraviolet (UV), visible, and near-infrared (NIR) regime, let us say 200 nm to 2000 nm, while absorbing light strongly in other segments of this range. There are several factors that account for this difference between various …


Mechanism Of Action Of Dihydropteridine Reductase, Gabriela Arias De La Rosa Feb 2021

Mechanism Of Action Of Dihydropteridine Reductase, Gabriela Arias De La Rosa

Dissertations, Theses, and Capstone Projects

Human dihydropteridine reductase is an enzyme that transfers a hydride from NADH to reduce quinonoid 7,8-dihydropterin (qBH2) to 5,6,7,8-tetrahydropterin (BH4), which is a cofactor important in the production of neurotransmitters.DHPR deficiency causes a drastic form of the neurological genetic disease phenylketonuria (PKU) that does not benefit from a phenylalanine-free diet.From site-directed mutagenesis studies, mostly on Rat DHPR, we know that certain residues are important for cofactor binding, substrate binding, and hydride transfer; however, there are still some questions about how DHPR works, particularly, because there is not a crystal structure of the tertiary complex: What is …


Computational Modeling Of Charge And Excitation Energy Transfer Dynamics In Complex Environments, Ning Chen Feb 2020

Computational Modeling Of Charge And Excitation Energy Transfer Dynamics In Complex Environments, Ning Chen

Dissertations, Theses, and Capstone Projects

This thesis describes computational simulations of charge and exciton dynamics and quantum calculations of organic conjugated oligomers. A comprehensive computational study of charge hopping dynamics was conducted for a model of disordered chain of sites coupled to quantum environments. Time-dependent mean square displacement, diffusion constant, and mobility were calculated by three different computational methods for solving the master equation, which validate the accuracy of calculations. Approximate rate kernels were also tested to understand the effects of approximations in representing quantum environments. In addition to the effects of temperature and disorder, different values of the gradient in the site energy were …


Nmr Characterizations Of Candidate Battery Electrolytes, Stephen A. Munoz Sep 2018

Nmr Characterizations Of Candidate Battery Electrolytes, Stephen A. Munoz

Dissertations, Theses, and Capstone Projects

Enormous strides have been made in next-generation power sources to build a more sustainable society. Energy storage has become a limiting factor in our progress, and there are huge environmental and financial incentives to find the next step forward in battery technology. This work discusses NMR methods for characterizing materials for use in battery application, with a special focus on relaxometry and diffusometry. Examples are provided of various recent investigations involving novel candidate electrolyte materials with different collaborators. Works discussed in this thesis include: the characterization of a new disruptive solid polymer electrolyte technology, investigations of the dynamics of super …


Nanostructured Fibers As A Versatile Photonic Platform: Radiative Cooling And Waveguiding Through Transverse Anderson Localization, Norman Nan Shi, Cheng-Chia Tsai, Michael J. Carter, Jyotirmoy Mandal, Adam C. Overvig, Matthew Y. Sfeir, Ming Lu, Catherine L. Craig, Gary D. Bernard, Yuan Yang, Nanfang Yu Jul 2018

Nanostructured Fibers As A Versatile Photonic Platform: Radiative Cooling And Waveguiding Through Transverse Anderson Localization, Norman Nan Shi, Cheng-Chia Tsai, Michael J. Carter, Jyotirmoy Mandal, Adam C. Overvig, Matthew Y. Sfeir, Ming Lu, Catherine L. Craig, Gary D. Bernard, Yuan Yang, Nanfang Yu

Publications and Research

Broadband high reflectance in nature is often the result of randomly, three-dimensionally structured materials. This study explores unique optical properties associated with one-dimensional nanostructures discovered in silk cocoon fibers of the comet moth, Argema mittrei. The fibers are populated with a high density of air voids randomly distributed across the fiber cross-section but are invariant along the fiber. These filamentary air voids strongly scatter light in the solar spectrum. A single silk fiber measuring ~50 μm thick can reflect 66% of incoming solar radiation, and this, together with the fibers' high emissivity of 0.88 in the mid-infrared range, allows …


Investigation Of Novel Electrolytes For Use In Lithium-Ion Batteries And Direct Methanol Fuel Cells, Kartik Pilar Feb 2018

Investigation Of Novel Electrolytes For Use In Lithium-Ion Batteries And Direct Methanol Fuel Cells, Kartik Pilar

Dissertations, Theses, and Capstone Projects

Energy storage and conversion plays a critical role in the efficient use of available energy and is crucial for the utilization of renewable energy sources. To achieve maximum efficiency of renewable energy sources, improvements to energy storage materials must be developed. In this work, novel electrolytes for secondary batteries and fuel cells have been studied using nuclear magnetic resonance and high pressure x-ray scattering techniques to form a better understanding of dynamic and structural properties of these materials. Ionic liquids have been studied due to their potential as a safer alternative to organic solvent-based electrolytes in lithium-ion batteries and composite …


Glass Polymorphism In Glycerol–Water Mixtures: I. A Computer Simulation Study, David A. Jahn, Jessina Wong, Johannes Bachler, Thomas Loerting, Nicolas Giovambattista Mar 2017

Glass Polymorphism In Glycerol–Water Mixtures: I. A Computer Simulation Study, David A. Jahn, Jessina Wong, Johannes Bachler, Thomas Loerting, Nicolas Giovambattista

Publications and Research

We perform out-of-equilibrium molecular dynamics (MD) simulations of water–glycerol mixtures in the glass state. Specifically, we study the transformations between low-density (LDA) and high-density amorphous (HDA) forms of these mixtures induced by compression/decompression at constant temperature. Our MD simulations reproduce qualitatively the density changes observed in experiments. Specifically, the LDA–HDA transformation becomes (i) smoother and (ii) the hysteresis in a compression/ decompression cycle decreases as T and/or glycerol content increase. This is surprising given the fast compression/decompression rates (relative to experiments) accessible in MD simulations. We study mixtures with glycerol molar concentration wg = 0–13% and find that, for the …


Atomistic Corrective Scheme For Supercell Density Functional Theory Calculations Of Charged Defects, Tengfei Cao, Angelo Bongiorno Jun 2016

Atomistic Corrective Scheme For Supercell Density Functional Theory Calculations Of Charged Defects, Tengfei Cao, Angelo Bongiorno

Publications and Research

A new method to correct formation energies of charged defects obtained by supercell densityfunctional calculations is presented and applied to bulk, surface, and low-dimensional systems. The method relies on atomistic models and a polarizable force field to describe a material system and its dielectric properties. The polarizable force field is based on a minimal set of fitting parameters, it accounts for the dielectric screening arising from ions and electrons separately, and it can be easily implemented in any software for atomistic molecular dynamics simulations. This work illustrates both technical aspects and applications of the new corrective scheme. The method is …


Light-Activated Photocurrent Degradation And Self-Healing In Perovskite Solar Cells, Wanyi Nie, Jean-Christophe Blancon, Amanda J. Neukirch, Kannatassen Appavoo, Hsinhan Tsai, Manish Chhowalla, Muhammad A. Alam, Matthew Y. Sfeir, Claudine Katan, Jacky Even, Sergei Tretiak, Jared J. Crochet, Gautam Gupta, Aditya D. Mohite May 2016

Light-Activated Photocurrent Degradation And Self-Healing In Perovskite Solar Cells, Wanyi Nie, Jean-Christophe Blancon, Amanda J. Neukirch, Kannatassen Appavoo, Hsinhan Tsai, Manish Chhowalla, Muhammad A. Alam, Matthew Y. Sfeir, Claudine Katan, Jacky Even, Sergei Tretiak, Jared J. Crochet, Gautam Gupta, Aditya D. Mohite

Publications and Research

Solution-processed organometallic perovskite solar cells have emerged as one of the most promising thin-film photovoltaic technology. However, a key challenge is their lack of stability over prolonged solar irradiation. Few studies have investigated the effect of light soaking on hybrid perovskites and have attributed the degradation in the optoelectronic properties to photochemical or field-assisted ion migration. Here we show that the slow photocurrent degradation in thin-film photovoltaic devices is due to the formation of light-activated meta-stable deep-level trap states. However, the devices can self-heal completely by resting them in the dark for <1 min or the degradation can be completely prevented by operating the devices at 0°C. We investigate several physical mechanisms to explain the microscopic origin for the formation of these trap states, among which the creation of small polaronic states involving localized cooperative lattice strain and molecular orientations emerges as a credible microscopic mechanism requiring further detailed studies.


A Direct Mechanism Of Ultrafast Intramolecular Singlet Fission In Pentacene Dimers, Eric G. Fuemmeler, Samuel N. Sanders, Andrew B. Pun, Elango Kumarasamy, Tao Zeng, Kiyoshi Miyata, Michael L. Steigerwald, X.-Y. Zhu, Matthew Y. Sfeir, Luis M. Campos, Nandini Ananth May 2016

A Direct Mechanism Of Ultrafast Intramolecular Singlet Fission In Pentacene Dimers, Eric G. Fuemmeler, Samuel N. Sanders, Andrew B. Pun, Elango Kumarasamy, Tao Zeng, Kiyoshi Miyata, Michael L. Steigerwald, X.-Y. Zhu, Matthew Y. Sfeir, Luis M. Campos, Nandini Ananth

Publications and Research

Interest in materials that undergo singlet fission (SF) has been catalyzed by the potential to exceed the Shockley–Queisser limit of solar power conversion efficiency. In conventional materials, the mechanism of SF is an intermolecular process (xSF), which is mediated by charge transfer (CT) states and depends sensitively on crystal packing or molecular collisions. In contrast, recently reported covalently coupled pentacenes yield ∼2 triplets per photon absorbed in individual molecules: the hallmark of intramolecular singlet fission (iSF). However, the mechanism of iSF is unclear. Here, using multireference electronic structure calculations and transient absorption spectroscopy, we establish that iSF can occur via …


Glass Polymorphism In Glycerol–Water Mixtures: Ii. Experimental Studies, Johannes Bachler, Violeta Fuentes-Landete, David A. Jahn, Jessina Wong, Nicolas Giovambattista, Thomas Loerting Mar 2016

Glass Polymorphism In Glycerol–Water Mixtures: Ii. Experimental Studies, Johannes Bachler, Violeta Fuentes-Landete, David A. Jahn, Jessina Wong, Nicolas Giovambattista, Thomas Loerting

Publications and Research

We report a detailed experimental study of (i) pressure-induced transformations in glycerol–water mixtures at T = 77 K and P = 0–1.8 GPa, and (ii) heating-induced transformations of glycerol–water mixtures recovered at 1 atm and T = 77 K. Our samples are prepared by cooling the solutions at ambient pressure at various cooling rates (100 K s1–10 K h1) and for the whole range of glycerol mole fractions, wg. Depending on concentration and cooling rates, cooling leads to samples containing amorphous ice (wg Z 0.20), ice (wg r 0.32), and/or ‘‘distorted ice’’ (0 o wg r 0.38). Upon compression, we …


Ultrafast Spectroscopy And Energy Transfer In An Organic/Inorganic Composite Of Zinc Oxide And Graphite Oxide, Jeff A. Secor Feb 2016

Ultrafast Spectroscopy And Energy Transfer In An Organic/Inorganic Composite Of Zinc Oxide And Graphite Oxide, Jeff A. Secor

Dissertations, Theses, and Capstone Projects

The energy transfers and nature of defect levels of an organic/inorganic composite of Zinc Oxide and Graphite are studied with multidimensional spectroscopy. The edge and surface states of each composite are uncovered using excitation emission experiments showing which defect states are mediating the energy transfer from the metal oxide to the graphite oxide. Multidimensional time resolved spectroscopy further describes the effect of the carbon phase on the energy transfer pathways in the material.


Wigner High-Electron-Correlation Regime Of Non-Uniform Density Systems: A Quantal-Density-Functional-Theory Study, Douglas Mortimer Achan Feb 2015

Wigner High-Electron-Correlation Regime Of Non-Uniform Density Systems: A Quantal-Density-Functional-Theory Study, Douglas Mortimer Achan

Dissertations, Theses, and Capstone Projects

The Wigner regime of a system of electrons in an external field is characterized by a low electron density and a high electron-interaction energy relative to the kinetic energy. The low correlation regime is in turn described by a high electron density and an electron-interaction energy smaller than the kinetic energy. The Wigner regime of a nonuniform electron density system is investigated via quantal density functional theory (QDFT). Within QDFT, the contributions of electron correlations due to the Pauli exclusion principle, Coulomb repulsion, and correlation-kinetic effects are separately delineated and explicitly defined. The nonuniform electron density system studied is that …


Quantum Crystallography Of Hydronium Cations, Sonjae Sycoria Wallace Oct 2014

Quantum Crystallography Of Hydronium Cations, Sonjae Sycoria Wallace

Dissertations, Theses, and Capstone Projects

Cationic hydronium clusters of the form [HaOb]^c,(c>0), have been investigated. After investigating over 2000 crystal structures containing hydronium cations found in the Cambridge Structural Database. The hydronium cationic compounds that were most unusual, mischaracterized, or those of apparent aggregates, were investigated further by geometry optimization and in some cases with the Quantum Theory of Atoms in Molecules (QTAIM). The results of our investigations yielded the first reports of stable conformations of cyclic dihydronium cationic clusters. In a second investigation we reported the first theoretically confirmed transition state of a H7O3+conformer captured within a crystal. A third product from our …


Variable Pressure Nuclear Magnetic Resonance Studies Of Ionic Liquids And Electrophoretic Probe Design, Armando Julio Rua Oct 2014

Variable Pressure Nuclear Magnetic Resonance Studies Of Ionic Liquids And Electrophoretic Probe Design, Armando Julio Rua

Dissertations, Theses, and Capstone Projects

Energy storage materials play a key role in, efficient, clean, and versatile use of energy, and are crucial for the exploitation of renewable energy. The improve efficiency of energy use stimulates the development of energy storage such as batteries or super capacitors, toward higher power and energy density, which significantly depends upon the advancement of new materials used in these devices. The new materials need better understanding and description in the electrochemical properties. Nuclear Magnetic Resonance (NMR) has been an important tool in the characterization of ionic liquids and solids. The measurements of the relaxation times and the diffusion coefficient …


Uv-Visible Microscope Spectrophotometric Polarization And Dichroism With Increased Discrimination Power In Forensic Analysis, Dale Kevin Purcell Jan 2013

Uv-Visible Microscope Spectrophotometric Polarization And Dichroism With Increased Discrimination Power In Forensic Analysis, Dale Kevin Purcell

All Open Access Legacy Dissertations and Capstone Projects

Microanalysis of transfer (Trace) evidence is the application of a microscope and microscopical techniques for the collection, observation, documentation, examination, identification, and discrimination of micrometer sized particles or domains. Microscope spectrophotometry is the union of microscopy and spectroscopy for microanalysis. Analytical microspectroscopy is the science of studying the emission, reflection, transmission, and absorption of electromagnetic radiation to determine the structure or chemical composition of microscopic-size materials. Microscope spectrophotometry instrument designs have evolved from monochromatic illumination which transmitted through the microscope and sample and then is detected by a photometer detector (photomultiplier tube) to systems in which broad-band (white light) illumination …


Climate Change: The Fork At The End Of Now, Micha Tomkiewicz Jan 2011

Climate Change: The Fork At The End Of Now, Micha Tomkiewicz

Publications and Research

There are many books on global warming written entirely from a layman's perspective, and there is a great deal of scientific literature on this subject. But few if any books attempt to bridge the science to those who lack a rigorous background in mathematics, physics and chemistry-but who may be working on careers in environmental science and policy. The new text is designed to introduce the field of global climate change from a scientific perspective-but written in a way that is accessible to students with some or little science background. It reviews the basic principles of climatic thermodynamics and atmospheric …