Open Access. Powered by Scholars. Published by Universities.®

Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 30 of 50

Full-Text Articles in Physics

Cholesterol Content Regulates The Interaction Of Αa-, Αb-, And Α-Crystallin With The Model Of Human Lens-Lipid Membranes, Raju Timsina, Preston Hazen, Geraline Trossi-Torres, Nawal K. Khadka, Navdeep Kalkat, Laxman Mainali Feb 2024

Cholesterol Content Regulates The Interaction Of Αa-, Αb-, And Α-Crystallin With The Model Of Human Lens-Lipid Membranes, Raju Timsina, Preston Hazen, Geraline Trossi-Torres, Nawal K. Khadka, Navdeep Kalkat, Laxman Mainali

Physics Faculty Publications and Presentations

α-Crystallin (αABc) is a major protein comprised of αA-crystallin (αAc) and αB-crystallin (αBc) that is found in the human eye lens and works as a molecular chaperone by preventing the aggregation of proteins and providing tolerance to stress. However, with age and cataract formation, the concentration of αABc in the eye lens cytoplasm decreases, with a corresponding increase in the membrane-bound αABc. This study uses the electron paramagnetic resonance (EPR) spin-labeling method to investigate the role of cholesterol (Chol) and Chol bilayer domains (CBDs) in the binding of αAc, αBc, and αABc to the Chol/model of human lens-lipid (Chol/MHLL) membranes. …


Association Of Alpha-Crystallin With Human Cortical And Nuclear Lens Lipid Membrane Increases With The Grade Of Cortical And Nuclear Cataract, Preston Hazen, Geraline Trossi-Torres, Raju Timsina, Nawal K. Khadka, Laxman Mainali Feb 2024

Association Of Alpha-Crystallin With Human Cortical And Nuclear Lens Lipid Membrane Increases With The Grade Of Cortical And Nuclear Cataract, Preston Hazen, Geraline Trossi-Torres, Raju Timsina, Nawal K. Khadka, Laxman Mainali

Physics Faculty Publications and Presentations

Eye lens α-crystallin has been shown to become increasingly membrane-bound with age and cataract formation; however, to our knowledge, no studies have investigated the membrane interactions of α-crystallin throughout the development of cataracts in separated cortical membrane (CM) and nuclear membrane (NM) from single human lenses. In this study, four pairs of human lenses from age-matched male and female donors and one pair of male lenses ranging in age from 64 to 73 years old (yo) were obtained to investigate the interactions of α-crystallin with the NM and CM throughout the progression of cortical cataract (CC) and nuclear cataract (NC) …


Interaction Of ΒL- And Γ-Crystallin With Phospholipid Membrane Using Atomic Force Microscopy, Nawal K. Khadka, Preston Hazen, Dieter Haemmerle, Laxman Mainali Nov 2023

Interaction Of ΒL- And Γ-Crystallin With Phospholipid Membrane Using Atomic Force Microscopy, Nawal K. Khadka, Preston Hazen, Dieter Haemmerle, Laxman Mainali

Physics Faculty Publications and Presentations

Highly concentrated lens proteins, mostly β- and γ-crystallin, are responsible for maintaining the structure and refractivity of the eye lens. However, with aging and cataract formation, β- and γ-crystallin are associated with the lens membrane or other lens proteins forming high-molecular-weight proteins, which further associate with the lens membrane, leading to light scattering and cataract development. The mechanism by which β- and γ-crystallin are associated with the lens membrane is unknown. This work aims to study the interaction of β- and γ-crystallin with the phospholipid membrane with and without cholesterol (Chol) with the overall goal of understanding the role of …


Binding Of ΒL-Crystallin With Models Of Animal And Human Eye Lens-Lipid Membrane, Preston Hazen, Geraline Trossi-Torres, Nawal K. Khadka, Raju Timsina, Laxman Mainali Sep 2023

Binding Of ΒL-Crystallin With Models Of Animal And Human Eye Lens-Lipid Membrane, Preston Hazen, Geraline Trossi-Torres, Nawal K. Khadka, Raju Timsina, Laxman Mainali

Physics Faculty Publications and Presentations

Several discoveries show that with age and cataract formation, β-crystallin binds with the lens membrane or associates with other lens proteins, which bind with the fiber cell plasma membrane, accompanied by light scattering and cataract formation. However, how lipids (phospholipids and sphingolipids) and cholesterol (Chol) influence β-crystallin binding to the membrane is unclear. This research aims to elucidate the role of lipids and Chol in the binding of β-crystallin to the membrane and the membrane’s physical properties (mobility, order, and hydrophobicity) with β-crystallin binding. We used electron paramagnetic resonance (EPR) spin-labeling methods to investigate the binding of βL-crystallin …


Modulation Of Voltage-Gating And Hysteresis Of Lysenin Channels By Cu2+ Ions, Andrew Bogard, Pangaea W. Finn, Aviana R. Smith, Ilinca M. Flacau, Rose Whiting, Daniel Fologea Aug 2023

Modulation Of Voltage-Gating And Hysteresis Of Lysenin Channels By Cu2+ Ions, Andrew Bogard, Pangaea W. Finn, Aviana R. Smith, Ilinca M. Flacau, Rose Whiting, Daniel Fologea

Physics Faculty Publications and Presentations

The intricate voltage regulation presented by lysenin channels reconstituted in artificial lipid membranes leads to a strong hysteresis in conductance, bistability, and memory. Prior investigations on lysenin channels indicate that the hysteresis is modulated by multivalent cations which are also capable of eliciting single-step conformational changes and transitions to stable closed or sub-conducting states. However, the influence on voltage regulation of Cu2+ ions, capable of completely closing the lysenin channels in a two-step process, was not sufficiently addressed. In this respect, we employed electrophysiology approaches to investigate the response of lysenin channels to variable voltage stimuli in the presence …


Hypo-Osmotic Stress And Pore-Forming Toxins Adjust The Lipid Order In Sheep Red Blood Cell Membranes, Rose Whiting, Sevio Stanton, Maryna Kucheriava, Aviana R. Smith, Matt Pitts, Daniel Robertson, Jacob Kammer, Zhiyu Li, Daniel Fologea Jul 2023

Hypo-Osmotic Stress And Pore-Forming Toxins Adjust The Lipid Order In Sheep Red Blood Cell Membranes, Rose Whiting, Sevio Stanton, Maryna Kucheriava, Aviana R. Smith, Matt Pitts, Daniel Robertson, Jacob Kammer, Zhiyu Li, Daniel Fologea

Physics Faculty Publications and Presentations

Lipid ordering in cell membranes has been increasingly recognized as an important factor in establishing and regulating a large variety of biological functions. Multiple investigations into lipid organization focused on assessing ordering from temperature-induced phase transitions, which are often well outside the physiological range. However, particular stresses elicited by environmental factors, such as hypo-osmotic stress or protein insertion into membranes, with respect to changes in lipid status and ordering at constant temperature are insufficiently described. To fill these gaps in our knowledge, we exploited the well-established ability of environmentally sensitive membrane probes to detect intramembrane changes at the molecular level. …


Atomic Force Microscopy Cantilever-Based Nanoindentation: Mechanical Property Measurements At The Nanoscale In Air And Fluid, Ashton E. Enrriques, Sean Howard, Raju Timsina, Nawal K. Khadka, Amber N. Hoover, Allison E. Ray, Ling Ding, Chioma Onwumelu, Stephan Nordeng, Laxman Mainali, Gunes Uzer, Paul H. Davis Dec 2022

Atomic Force Microscopy Cantilever-Based Nanoindentation: Mechanical Property Measurements At The Nanoscale In Air And Fluid, Ashton E. Enrriques, Sean Howard, Raju Timsina, Nawal K. Khadka, Amber N. Hoover, Allison E. Ray, Ling Ding, Chioma Onwumelu, Stephan Nordeng, Laxman Mainali, Gunes Uzer, Paul H. Davis

Physics Faculty Publications and Presentations

An atomic force microscope (AFM) fundamentally measures the interaction between a nanoscale AFM probe tip and the sample surface. If the force applied by the probe tip and its contact area with the sample can be quantified, it is possible to determine the nanoscale mechanical properties (e.g., elastic or Young's modulus) of the surface being probed. A detailed procedure for performing quantitative AFM cantilever-based nanoindentation experiments is provided here, with representative examples of how the technique can be applied to determine the elastic moduli of a wide variety of sample types, ranging from kPa to GPa. These include live mesenchymal …


Liposome Formulation For Tumor-Targeted Drug Delivery Using Radiation Therapy, Daniel Fologea Oct 2022

Liposome Formulation For Tumor-Targeted Drug Delivery Using Radiation Therapy, Daniel Fologea

Physics Faculty Publications and Presentations

Targeted delivery of drugs or other therapeutic agents through internal or external triggers has been used to control and accelerate the release from liposomal carriers in a number of studies, but relatively few utilize energy of therapeutic X-rays as a trigger. We have synthesized liposomes that are triggered by ionizing radiation (RTLs) to release their therapeutic payload. These liposomes are composed of natural egg phosphatidylethanolamine (PE), 1,2-distearoyl-sn-glycero-3-phosphocholine (DSPC), cholesterol, and 1,2-disteroyl-sn-glycero-3-phosphoethanolamine-N-[methoxy (polyethylene glycol)-2000] (DSPE-PEG-2000), and the mean size of the RTL was in the range of 114 to 133 nm, as measured by nanoparticle tracking analysis (NTA). The trigger mechanism …


Experimental Investigations On The Conductance Of Lipid Membranes Under Differential Hydrostatic Pressure, Rose Whiting, Pangaea W. Finn, Andrew Bogard, Fulton Mckinney, Dallin Pankratz, Aviana R. Smith, Elen A. Gardner, Daniel Fologea May 2022

Experimental Investigations On The Conductance Of Lipid Membranes Under Differential Hydrostatic Pressure, Rose Whiting, Pangaea W. Finn, Andrew Bogard, Fulton Mckinney, Dallin Pankratz, Aviana R. Smith, Elen A. Gardner, Daniel Fologea

Physics Faculty Publications and Presentations

The unassisted transport of inorganic ions through lipid membranes has become increasingly relevant to an expansive range of biological phenomena. Recent simulations indicate a strong influence of a lipid membrane’s curvature on its permeability, which may be part of the overall cell sensitivity to mechanical stimulation. However, most ionic permeability experiments employ a flat, uncurved lipid membrane, which disregards the physiological relevance of curvature on such investigations. To fill this gap in our knowledge, we adapted a traditional experimental system consisting of a planar lipid membrane, which we exposed to a controlled, differential hydrostatic pressure. Our electrophysiology experiments indicate a …


The Ionic Selectivity Of Lysenin Channels In Open And Sub-Conducting States, Andrew Bogard, Pangaea W. Finn, Fulton Mckinney, Ilinca M. Flacau, Aviana R. Smith, Rosey Whiting, Daniel Fologea Nov 2021

The Ionic Selectivity Of Lysenin Channels In Open And Sub-Conducting States, Andrew Bogard, Pangaea W. Finn, Fulton Mckinney, Ilinca M. Flacau, Aviana R. Smith, Rosey Whiting, Daniel Fologea

Physics Faculty Publications and Presentations

The electrochemical gradients established across cell membranes are paramount for the execution of biological functions. Besides ion channels, other transporters, such as exogenous pore-forming toxins, may present ionic selectivity upon reconstitution in natural and artificial lipid membranes and contribute to the electrochemical gradients. In this context, we utilized electrophysiology approaches to assess the ionic selectivity of the pore-forming toxin lysenin reconstituted in planar bilayer lipid membranes. The membrane voltages were determined from the reversal potentials recorded upon channel exposure to asymmetrical ionic conditions, and the permeability ratios were calculated from the fit with the Goldman–Hodgkin–Katz equation. Our work shows that …


Rapid Production And Purification Of Dye-Loaded Liposomes By Electrodialysis-Driven Depletion, Gamid Abatchev, Andrew Bogard, Zoe Hutchinson, Jason Ward, Daniel Fologea Jun 2021

Rapid Production And Purification Of Dye-Loaded Liposomes By Electrodialysis-Driven Depletion, Gamid Abatchev, Andrew Bogard, Zoe Hutchinson, Jason Ward, Daniel Fologea

Physics Faculty Publications and Presentations

Liposomes are spherical-shaped vesicles that enclose an aqueous milieu surrounded by bilayer or multilayer membranes formed by self-assembly of lipid molecules. They are intensively exploited as either model membranes for fundamental studies or as vehicles for delivery of active substances in vivo and in vitro. Irrespective of the method adopted for production of loaded liposomes, obtaining the final purified product is often achieved by employing multiple, time consuming steps. To alleviate this problem, we propose a simplified approach for concomitant production and purification of loaded liposomes by exploiting the Electrodialysis-Driven Depletion of charged molecules from solutions. Our investigations show that …


Liposomes Prevent In Vitro Hemolysis Induced By Streptolysin O And Lysenin, Marcelo Ayllon, Gamid Abatchev, Andrew Bogard, Rosey Whiting, Sarah E. Hobdey, Daniel Fologea May 2021

Liposomes Prevent In Vitro Hemolysis Induced By Streptolysin O And Lysenin, Marcelo Ayllon, Gamid Abatchev, Andrew Bogard, Rosey Whiting, Sarah E. Hobdey, Daniel Fologea

Physics Faculty Publications and Presentations

The need for alternatives to antibiotics in the fight against infectious diseases has inspired scientists to focus on antivirulence factors instead of the microorganisms themselves. In this respect, prior work indicates that tiny, enclosed bilayer lipid membranes (liposomes) have the potential to compete with cellular targets for toxin binding, hence preventing their biological attack and aiding with their clearance. The effectiveness of liposomes as decoy targets depends on their availability in the host and how rapidly they are cleared from the circulation. Although liposome PEGylation may improve their circulation time, little is known about how such a modification influences their …


Lysenin Channels As Sensors For Ions And Molecules, Andrew Bogard, Gamid Abatchev, Zoe Hutchinson, Jason Ward, Pangaea W. Finn, Fulton Mckinney, Daniel Fologea Nov 2020

Lysenin Channels As Sensors For Ions And Molecules, Andrew Bogard, Gamid Abatchev, Zoe Hutchinson, Jason Ward, Pangaea W. Finn, Fulton Mckinney, Daniel Fologea

Physics Faculty Publications and Presentations

Lysenin is a pore-forming protein extracted from the earthworm Eisenia fetida, which inserts large conductance pores in artificial and natural lipid membranes containing sphingomyelin. Its cytolytic and hemolytic activity is rather indicative of a pore-forming toxin; however, lysenin channels present intricate regulatory features manifested as a reduction in conductance upon exposure to multivalent ions. Lysenin pores also present a large unobstructed channel, which enables the translocation of analytes, such as short DNA and peptide molecules, driven by electrochemical gradients. These important features of lysenin channels provide opportunities for using them as sensors for a large variety of applications. In …


Kinetic Exclusion Assay Of Biomolecules By Aptamer Capture, Mark H. Smith, Daniel Fologea Jun 2020

Kinetic Exclusion Assay Of Biomolecules By Aptamer Capture, Mark H. Smith, Daniel Fologea

Physics Faculty Publications and Presentations

DNA aptamers are short nucleotide oligomers selected to bind a target ligand with affinity and specificity rivaling that of antibodies. These remarkable features recommend aptamers as candidates for analytical and therapeutic applications that traditionally use antibodies as biorecognition elements. Numerous traditional and emerging analytical techniques have been proposed and successfully implemented to utilize aptamers for sensing purposes. In this work, we exploited the analytical capabilities offered by the kinetic exclusion assay technology to measure the affinity of fluorescent aptamers for their thrombin target and quantify the concentration of analyte in solution. Standard binding curves constructed by using equilibrated mixtures of …


Temporary Membrane Permeabilization Via The Pore-Forming Toxin Lysenin, Nisha Shrestha, Christopher A. Thomas, Devon Richtsmeier, Andrew Bogard, Rebecca Hermann, Malyk Walker, Gamid Abatchev, Raquel J. Brown, Daniel Fologea May 2020

Temporary Membrane Permeabilization Via The Pore-Forming Toxin Lysenin, Nisha Shrestha, Christopher A. Thomas, Devon Richtsmeier, Andrew Bogard, Rebecca Hermann, Malyk Walker, Gamid Abatchev, Raquel J. Brown, Daniel Fologea

Physics Faculty Publications and Presentations

Pore-forming toxins are alluring tools for delivering biologically-active, impermeable cargoes to intracellular environments by introducing large conductance pathways into cell membranes. However, the lack of regulation often leads to the dissipation of electrical and chemical gradients, which might significantly affect the viability of cells under scrutiny. To mitigate these problems, we explored the use of lysenin channels to reversibly control the barrier function of natural and artificial lipid membrane systems by controlling the lysenin’s transport properties. We employed artificial membranes and electrophysiology measurements in order to identify the influence of labels and media on the lysenin channel’s conductance. Two cell …


An Effective Electric Dipole Model For Voltage-Induced Gating Mechanism Of Lysenin, Eric Krueger, Daniel Fologea Aug 2019

An Effective Electric Dipole Model For Voltage-Induced Gating Mechanism Of Lysenin, Eric Krueger, Daniel Fologea

Physics Faculty Publications and Presentations

Lysenin is a pore-forming toxin, which self-inserts open channels into sphingomyelin containing membranes and is known to be voltage regulated. The mechanistic details of its voltage gating mechanism, however, remains elusive despite much recent efforts. Here, we have employed a novel combination of experimental and computational techniques to examine a model for voltage gating, that is based on the existence of an “effective electric dipole” inspired by recent reported structures of lysenin. We support this mechanism by the observations that (i) the charge-reversal and neutralization substitutions in lysenin result in changing its electrical gating properties by modifying the strength of …


Single-Molecule Imaging Reveals The Interplay Between Transcription Factors, Nucleosomes, And Transcriptional Bursting, Matthew L. Ferguson Jun 2019

Single-Molecule Imaging Reveals The Interplay Between Transcription Factors, Nucleosomes, And Transcriptional Bursting, Matthew L. Ferguson

Physics Faculty Publications and Presentations

Transcription factors show rapid and reversible binding to chromatin in living cells, and transcription occurs in sporadic bursts, but how these phenomena are related is unknown. Using a combination of in vitro and in vivo single-molecule imaging approaches, we directly correlated binding of the Gal4 transcription factor with the transcriptional bursting kinetics of the Gal4 target genes GAL3 and GAL10 in living yeast cells. We find that Gal4 dwell time sets the transcriptional burst size. Gal4 dwell time depends on the affinity of the binding site and is reduced by orders of magnitude by nucleosomes. Using a novel imaging platform …


Insights Into The Voltage Regulation Mechanism Of The Pore-Forming Toxin Lysenin, Sheenah Lynn Bryant, Tyler Clark, Christopher Alex Thomas, Kaitlyn Summer Ware, Andrew Bogard, Colleen Calzacorta, Daniel Prather, Daniel Fologea Aug 2018

Insights Into The Voltage Regulation Mechanism Of The Pore-Forming Toxin Lysenin, Sheenah Lynn Bryant, Tyler Clark, Christopher Alex Thomas, Kaitlyn Summer Ware, Andrew Bogard, Colleen Calzacorta, Daniel Prather, Daniel Fologea

Physics Faculty Publications and Presentations

Lysenin, a pore forming toxin (PFT) extracted from Eisenia fetida, inserts voltage-regulated channels into artificial lipid membranes containing sphingomyelin. The voltage-induced gating leads to a strong static hysteresis in conductance, which endows lysenin with molecular memory capabilities. To explain this history-dependent behavior, we hypothesized a gating mechanism that implies the movement of a voltage domain sensor from an aqueous environment into the hydrophobic core of the membrane under the influence of an external electric field. In this work, we employed electrophysiology approaches to investigate the effects of ionic screening elicited by metal cations on the voltage-induced gating and hysteresis …


Zno Nanoparticles Modulate The Ionic Transport And Voltage Regulation Of Lysenin Nanochannels, Sheenah L. Bryant, Josh E. Eixenberger, Steven Rossland, Holly Apsley, Connor Hoffman, Nisha Shrestha, Michael Mchugh, Alex Punnoose, Daniel Fologea Dec 2017

Zno Nanoparticles Modulate The Ionic Transport And Voltage Regulation Of Lysenin Nanochannels, Sheenah L. Bryant, Josh E. Eixenberger, Steven Rossland, Holly Apsley, Connor Hoffman, Nisha Shrestha, Michael Mchugh, Alex Punnoose, Daniel Fologea

Physics Faculty Publications and Presentations

Background: The insufficient understanding of unintended biological impacts from nanomaterials (NMs) represents a serious impediment to their use for scientific, technological, and medical applications. While previous studies have focused on understanding nanotoxicity effects mostly resulting from cellular internalization, recent work indicates that NMs may interfere with transmembrane transport mechanisms, hence enabling contributions to nanotoxicity by affecting key biological activities dependent on transmembrane transport. In this line of inquiry, we investigated the effects of charged nanoparticles (NPs) on the transport properties of lysenin, a pore-forming toxin that shares fundamental features with ion channels such as regulation and high transport rate.

Results: …


Identifying The Sources Of Ferromagnetism In Sol-Gel Synthesized Zn1-XCoXO (0 ≤ X ≤ 0.10) Nanoparticles, J. J. Beltrán, C. A. Barrero, A. Punnoose Aug 2016

Identifying The Sources Of Ferromagnetism In Sol-Gel Synthesized Zn1-XCoXO (0 ≤ X ≤ 0.10) Nanoparticles, J. J. Beltrán, C. A. Barrero, A. Punnoose

Physics Faculty Publications and Presentations

We have carefully investigated the structural, optical and electronic properties and related them with the magnetism of sol-gel synthesized Zn1-xCoxO (0 ≤ x ≤ 0.10) nanoparticles. Samples with x ≤ 0.05 were pure and free of spurious phases, whereas ZnCo2O4 was identified as the impurity phase for samples with x ≥ 0.08. Samples with x < 0.05 were found to be true solid solutions with only high spin Co2+ ions into ZnO structure, whereas sample with x = 0.05, exhibited the presence of high spin Co2+ and low spin Co3+. For the impurity-free samples we found that as Co concentration increases, a and …


Intramembrane Congestion Effects On Lysenin Channel Voltage-Induced Gating, Eric Krueger, Sheenah Bryant, Nisha Shrestha, Tyler Clark, Charles Hanna, David Pink, Daniel Fologea Mar 2016

Intramembrane Congestion Effects On Lysenin Channel Voltage-Induced Gating, Eric Krueger, Sheenah Bryant, Nisha Shrestha, Tyler Clark, Charles Hanna, David Pink, Daniel Fologea

Physics Faculty Publications and Presentations

All cell membranes are packed with proteins. The ability to investigate the regulatory mechanisms of protein channels in experimental conditions mimicking their congested native environment is crucial for understanding the environmental physicochemical cues that may fundamentally contribute to their functionality in natural membranes. Here we report on investigations of the voltage-induced gating of lysenin channels in congested conditions experimentally achieved by increasing the number of channels inserted into planar lipid membranes. Typical electrophysiology measurements reveal congestion-induced changes to the voltage-induced gating, manifested as a significant reduction of the response to external voltage stimuli. Furthermore, we demonstrate a similar diminished voltage …


Magnetoresistance Characteristics In Individual Fe3O4 Single Crystal Nanowire, K. M. Reddy, Nitin P. Padture, Alex Punnoose, Charles Hanna May 2015

Magnetoresistance Characteristics In Individual Fe3O4 Single Crystal Nanowire, K. M. Reddy, Nitin P. Padture, Alex Punnoose, Charles Hanna

Physics Faculty Publications and Presentations

We report on the magnetoresistance (MR) and electron transport measurements observed on asingle crystal magnetite nanowire prepared using a hydrothermal synthesis method. High-resolution electron microscopy revealed the single crystal magnetite nanowires with 80–120 nm thickness and up to 8 μm in length. Magnetic measurements showed the typical Verwey transition around 120 K with a 100 Oe room temperature coercivity and 45 emu/g saturationmagnetization, which are comparable to bulk magnetite. Electrical resistance measurements in 5-300 K temperature range were performed by scanning gate voltage and varying appliedmagnetic field. Electrical resistivity of the nanowire was found to be around 5 × …


Heterojunction Metal-Oxide-Metal Au-Fe3O4-Au Single Nanowire Device For Spintronics, K. M. Reddy, Nitin P. Padture, Alex Punnoose, Charles Hanna May 2015

Heterojunction Metal-Oxide-Metal Au-Fe3O4-Au Single Nanowire Device For Spintronics, K. M. Reddy, Nitin P. Padture, Alex Punnoose, Charles Hanna

Physics Faculty Publications and Presentations

In this report, we present the synthesis of heterojunction magnetite nanowires in alumina template and describe magnetic and electrical properties from a single nanowire device for spintronics applications. Heterojunction Au-Fe-Au nanowire arrays were electrodeposited in porous aluminum oxide templates, and an extensive and controlled heat treatment process converted Fe segment to nanocrystalline cubic magnetite phase with well-defined Au-Fe3O4 interfaces as confirmed by the transmission electron microscopy. Magnetic measurements revealed Verwey transition shoulder around 120 K and a room temperature coercive field of 90 Oe. Current–voltage (I-V) characteristics of a single Au-Fe3O4-Au nanowire have …


Cytotoxicity Of Zno Nanoparticles Can Be Tailored By Modifying Their Surface Structure: A Green Chemistry Approach For Safer Nanomaterials, Alex Punnoose, Kelsey Dodge, John W. Rasmussen, Jordan Chess, Denise Wingett, Catherine Anders May 2014

Cytotoxicity Of Zno Nanoparticles Can Be Tailored By Modifying Their Surface Structure: A Green Chemistry Approach For Safer Nanomaterials, Alex Punnoose, Kelsey Dodge, John W. Rasmussen, Jordan Chess, Denise Wingett, Catherine Anders

Physics Faculty Publications and Presentations

ZnO nanoparticles (NP) are extensively used in numerous nanotechnology applications; however, they also happen to be one of the most toxic nanomaterials. This raises significant environmental and health concerns and calls for the need to develop new synthetic approaches to produce safer ZnO NP, while preserving their attractive optical, electronic, and structural properties. In this work, we demonstrate that the cytotoxicity of ZnO NP can be tailored by modifying their surface-bound chemical groups, while maintaining the core ZnO structure and related properties. Two equally sized (9.26 ± 0.11 nm) ZnO NP samples were synthesized from the same zinc acetate precursor …


Reproducible Nanostructure Fabrication Using Atomic Force Microscopy Indentation With Minimal Tip Damage, Seunghee Jeon, Bongwoo Ryu, Wonho Jhe, Zheong G. Khim, Byung I. Kim Jan 2014

Reproducible Nanostructure Fabrication Using Atomic Force Microscopy Indentation With Minimal Tip Damage, Seunghee Jeon, Bongwoo Ryu, Wonho Jhe, Zheong G. Khim, Byung I. Kim

Physics Faculty Publications and Presentations

A uniform pattern of quantum dots and nanowires were reproducibly fabricated by creating holes in a two-layer structure using atomic force microscopy (AFM) indentation, dry-etching of polymer resists, and metal deposition through the indentation holes. The two-layer structure was created by depositing a thin gold layer onto a polymethyl methacrylate (PMMA) layer on a silicon substrate. The indentation depth was set so that the AFM tip penetrated the thin gold layer without the tip contacting the silicon substrate. This two-layer indentation was used to create a pattern of holes in the thin gold layer. Then, the PMMA was exposed to …


Force-Feedback High-Speed Atomic Force Microscope, Byung I. Kim, Ryan D. Boehm Jan 2014

Force-Feedback High-Speed Atomic Force Microscope, Byung I. Kim, Ryan D. Boehm

Physics Faculty Publications and Presentations

High-speed atomic force microscopy (HSAFM) has enabled researchers to view the nanometer-scale dynamic behavior of individual biological and bio-relevant molecules at a molecular-level resolution under physiologically relevant time scales, which is the realization of a dream in life sciences. These high-speed imaging applications now extend to the cellular/bacterial systems with the use of a smaller cantilever. By reducing the sizes of the HSAFM cantilevers by a factor of ten, systems have demonstrated image speeds up to 0.1 frames per second for larger biological systems such as bacteria. However, this imaging speed is insufficient to understand many rapid large-scale biological phenomena. …


Fluctuant Magnetism In Metal Oxide Nanocrystals Capped With Surfactants, Aaron Thurber, Michael S. Jones, Dmitri Tenne, Charles B. Hanna, Alex Punnoose Aug 2013

Fluctuant Magnetism In Metal Oxide Nanocrystals Capped With Surfactants, Aaron Thurber, Michael S. Jones, Dmitri Tenne, Charles B. Hanna, Alex Punnoose

Physics Faculty Publications and Presentations

We demonstrate experimentally that magnetism in ZnO, TiO2, CeO2, andSnO2 nanocrystals (NCs) has a fluctuant nature that varies with capping surfactant type and concentration. By developing a forced hydrolysis approach with additional postprocessing for the synthesis and surfactant capping of these NCs, we effectively avoid the influence of size, shape, and magnetic impurities on the magnetic behavior of NCs, thus revealing the systematic influence of the capping surfactants on the NC magnetism. The x-ray photoelectron spectroscopy results and theoretical calculations clearly show that the magnetism fluctuation with surfactant concentration can be attributed to the periodic …


Optimization Of Force Sensitivity In Q-Controlled Amplitude-Modulation Atomic Force Microscopy, Jongwoo Kim, Baekman Sung, Byung I. Kim, Wonho Jhe Aug 2013

Optimization Of Force Sensitivity In Q-Controlled Amplitude-Modulation Atomic Force Microscopy, Jongwoo Kim, Baekman Sung, Byung I. Kim, Wonho Jhe

Physics Faculty Publications and Presentations

We present control of force sensitivity in Q-controlled amplitude-modulation atomic force microscopy (AM-AFM) that is based on the high-Q quartz tuning-fork. It is found that the phase noise is identical to the amplitude noise divided by oscillation amplitude in AM-AFM. In particular, we observe that while Q-control does not compromise the signal-to-noise ratio, it enhances the detection sensitivity because the minimum detectable force gradient is inversely proportional to the effective quality factor for large bandwidths, which is due to reduction of frequency noise. This work demonstrates Q-control in AM-AFM is a useful technique for enhancement of …


Direct Observation Of Self-Assembled Chain-Like Water Structures In A Nanoscopic Water Meniscus, Byung I. Kim, Ryan D. Boehm, Jeremy R. Bonander Aug 2013

Direct Observation Of Self-Assembled Chain-Like Water Structures In A Nanoscopic Water Meniscus, Byung I. Kim, Ryan D. Boehm, Jeremy R. Bonander

Physics Faculty Publications and Presentations

Sawtooth-like oscillatory forces generated by water molecules confined between two oxidized silicon surfaces were observed using a cantilever-based optical interfacial force microscope when the two surfaces approached each other in ambient environments. The humidity-dependent oscillatory amplitude and periodicity were 3-12 nN and 3-4 water diameters, respectively. Half of each period was matched with a freely jointed chain model, possibly suggesting that the confined water behaved like a bundle of water chains. The analysis also indicated that water molecules self-assembled to form chain-like structures in a nanoscopic meniscus between two hydrophilic surfaces in air. From the friction force data measured simultaneously, …


Magnetic Properties Of Fe Doped, Co Doped, And Fe+Co Co-Doped Zno, J. J. Beltrán, J. A. Osorio, C. A. Barrero, Charles B. Hanna, A. Punnoose May 2013

Magnetic Properties Of Fe Doped, Co Doped, And Fe+Co Co-Doped Zno, J. J. Beltrán, J. A. Osorio, C. A. Barrero, Charles B. Hanna, A. Punnoose

Physics Faculty Publications and Presentations

The structural, electronic, and magnetic properties of Zn0.95Co0.05O, Zn0.95Fe0.05O, and Zn0.90Fe0.05Co0.05O nanoparticles prepared by a sol-gel method are presented and discussed. X-ray diffraction and optical analysis indicated that high spin Co2+ ions substitute for the Zn2+ ions in tetrahedral sites. 57Fe Mössbauer spectroscopy showed the presence of isolated paramagnetic Fe3+ ions in both Fe doped and Fe+Co co-doped ZnO, however, no evidence of ferromagnetically ordered Fe3+ ions is observed. In the Zn0.95Fe0.05O sample, weak presence of ZnFe …