Open Access. Powered by Scholars. Published by Universities.®

Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

PDF

Boise State University

Paul J. Simmonds

III-V

Articles 1 - 1 of 1

Full-Text Articles in Physics

Growth Of Metamorphic Ingap For Wide-Bandgap Photovoltaic Junction By Mbe, John Simon, Stephanie Tomasulo, Paul J. Simmonds, Manuel J. Romero, Minjoo Larry Lee Apr 2010

Growth Of Metamorphic Ingap For Wide-Bandgap Photovoltaic Junction By Mbe, John Simon, Stephanie Tomasulo, Paul J. Simmonds, Manuel J. Romero, Minjoo Larry Lee

Paul J. Simmonds

Metamorphic triple-junction solar cells can currently attain efficiencies as high as 41.1%. Using additional junctions could lead to efficiencies above 50%, but require the development of a wide bandgap (2.0-2.2eV) material to act as the top layer. In this work we demonstrate wide bandgap InyGa1-yP grown on GaAsxP1-x via solid source molecular beam epitaxy. Unoptimized tensile GaAsxP1-x buffers grown on GaAs exhibit asymmetric strain relaxation, along with formation of faceted trenches 100-300 nm deep in the [01-1] direction. Smaller grading step size and higher substrate temperatures minimizes the facet trench …