Open Access. Powered by Scholars. Published by Universities.®

Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

PDF

Engineering Physics

2010

Institution
Keyword
Publication
Publication Type

Articles 1 - 30 of 34

Full-Text Articles in Physics

Measurement System For High Pressure Characterizations Of Materials, Matthew K. Jacobsen Dec 2010

Measurement System For High Pressure Characterizations Of Materials, Matthew K. Jacobsen

UNLV Theses, Dissertations, Professional Papers, and Capstones

Thermoelectric materials have long been investigated for possible use as power sources. This application was recently put to use in the Voyager space program, powering the deep space probes. Despite the usefulness of these materials, the use of pressure to investigate the material properties has only recently become interesting. As such, the work in this document was to developing a system for concurrently measuring the necessary properties. This system is capable of measuring the electrical resistivity, thermal conductivity, and Seebeck coefficient in the pressure range from 0 - 10 GPa. The results for zinc, almandine garnet, and nickel are presented …


A Comprehensive Rocket And Radar Study Of Midlatitude Spread F, G.D. Earle, P. Bhanja, P.A. Roddy, C.M. Swenson, Aroh Barjatya, Et Al. Dec 2010

A Comprehensive Rocket And Radar Study Of Midlatitude Spread F, G.D. Earle, P. Bhanja, P.A. Roddy, C.M. Swenson, Aroh Barjatya, Et Al.

Publications

An instrumented sounding rocket launched from Wallops Island Virginia has flown through a midlatitude spread F (MSF) event in conjunction with simultaneous ionosonde, HF radar, and 244 MHz scintillation observations from the ground. The in situ measurements include the electric field, horizontal neutral wind, and plasma density within the spread F region. The ground‐based HF radar measurements of wave signatures in the bottomside F region ledge reveal the presence of waves propagating to the north and northwest prior to and during the spreading event. The periods of these bottomside waves range from 16 to 60 min, and they are shown …


Development Of Acrylamide Based Photopolymer For Full Colour Display Holography, Chakrapani Meka Nov 2010

Development Of Acrylamide Based Photopolymer For Full Colour Display Holography, Chakrapani Meka

Doctoral

Holography is a firmly established discipline that can be used as a tool for scientific and engineering studies and as a display medium as well. Until now both silver halide photographic emulsions (SHPE) and dichromated gelatine (DCG) have been the most common materials used for high efficiency full colour reflection hologram recording. However, these materials require wet chemical processing for developing the holograms which is laborious and costly from the point of view of commercial applications. Self-developing photopolymers such as acrylamide based photopolymer (ABP) which do not require development are the ideal choice for real-time recording and reconstruction of holograms. …


Pulsed Laser Deposition Of Graphite Counter Electrodes For Dye-Sensitized Solar Cells, Krishna P. Acharya, Himal Khatri, Sylvain Marsillac, Bruno Ullrich, Pavel Anzenbacher, Mikhail Zamkov Nov 2010

Pulsed Laser Deposition Of Graphite Counter Electrodes For Dye-Sensitized Solar Cells, Krishna P. Acharya, Himal Khatri, Sylvain Marsillac, Bruno Ullrich, Pavel Anzenbacher, Mikhail Zamkov

Electrical & Computer Engineering Faculty Publications

We report on pulsed laser deposition of graphite onto flexible plastic and conductive glass substrates for use as a counter electrode in dye-sensitized solar cells. The efficiency of as-prepared graphite electrodes was tested using CdS-sensitized solar cell architecture resulting in external quantum efficiency comparable to that of conventional platinum counter electrodes. This work highlights the possibility of using pulsed laser deposited graphite as a low-cost alternative to platinum, which could be fabricated both on flexible and rigid substrates.


Doping Dependence Of Electronic And Mechanical Properties Of Gase1−XTeX And Ga1−XInXSe From First Principles, Zs. Rak, S. D. Mahanti, K. C. Mandal, N. C. Fernelius Oct 2010

Doping Dependence Of Electronic And Mechanical Properties Of Gase1−XTeX And Ga1−XInXSe From First Principles, Zs. Rak, S. D. Mahanti, K. C. Mandal, N. C. Fernelius

Faculty Publications

No abstract provided.


Energetyka Niskoemisyjna, Wojciech M. Budzianowski Sep 2010

Energetyka Niskoemisyjna, Wojciech M. Budzianowski

Wojciech Budzianowski

No abstract provided.


Nonlinear Observers For Human-In-The-Loop Control Systems, Samuel Kitchen Mckinley Jul 2010

Nonlinear Observers For Human-In-The-Loop Control Systems, Samuel Kitchen Mckinley

Master's Theses - Daytona Beach

The development of models for a human-in-the-loop with hardware is an area of ongoing research. The ability to simulate a human-in-the-loop with hardware provides a platform for better understanding the dynamics of human and machine cognition. A human-in-the-loop model provides information that can be used to design more efficient human interfaces and smarter autonomous assistant controllers. This can make a complex task such as flying an aircraft safer and more accessible. This thesis explores different possibilities for human operator models to be modeled in the loop with a vehicle. A human is modeled as a linear state feedback controller in …


Structural, Magnetic, And Defect Properties Of Co-Pt-Type Magnetic-Storage Alloys: Density-Functional Theory Study Of Thermal Processing Effects, Aftab Alam, Brent Kraczek, Duane D. Johnson Jul 2010

Structural, Magnetic, And Defect Properties Of Co-Pt-Type Magnetic-Storage Alloys: Density-Functional Theory Study Of Thermal Processing Effects, Aftab Alam, Brent Kraczek, Duane D. Johnson

Duane D. Johnson

Using an optimized-basis Korringa-Kohn-Rostoker-coherent-potential approximation method, we calculate formation enthalpies ΔEf, structural, and magnetic properties of paramagnetic (PM) and ferromagnetic, disordered A1 and ordered L10 CoPt, FePd, and FePt systems that are of interest for high-density magnetic-recording media. To address processing effects, we focus on the point defects that dictate thermal properties and planar defects (e.g., c domain and antiphase boundaries) which can serve as pinning centers for magnetic domains and affect storage properties. We determine bulk Curie (Tc) and order-disorder (To-d) transition temperatures within 4% of observed values, and estimates for nanoparticles. Planar-defect energies γhklx show that the favorable …


Boron Carbide Based Solid State Neutron Detectors: The Effects Of Bias And Time Constant On Detection Efficiency, Nina Hong, John Mullins, Keith Foreman, Shireen Adenwalla Jun 2010

Boron Carbide Based Solid State Neutron Detectors: The Effects Of Bias And Time Constant On Detection Efficiency, Nina Hong, John Mullins, Keith Foreman, Shireen Adenwalla

Shireen Adenwalla Papers

Neutron detection in thick boron carbide(BC)/n-type Si heterojunction diodes shows a threefold increase in efficiency with applied bias and longer time constants. The improved efficiencies resulting from long time constants have been conclusively linked to the much longer charge collection times in the BC layer. Neutron detection signals from both the p-type BC layer and the n-type Si side of the heterojunction diode are observed, with comparable efficiencies. Collectively, these provide strong evidence that the semiconducting BC layer plays an active role in neutron detection, both in neutron capture and in charge generation and collection.


Construction And Enhancement Of Stereo Vacuum Tube Amplifier With Precision Machined Enclosure, Nikolaus (Nik) Glazar May 2010

Construction And Enhancement Of Stereo Vacuum Tube Amplifier With Precision Machined Enclosure, Nikolaus (Nik) Glazar

Physics

The purpose of this project was to build a high fidelity tube amplifier from a kit, and machine a beautiful enclosure to house the electronics. Improvements were made to the circuit, and the amplifier was then tested for audio performance.


An Investigation Of Gas Bubble Generation And Measurement In Water And Mercury, Stuart A Walker May 2010

An Investigation Of Gas Bubble Generation And Measurement In Water And Mercury, Stuart A Walker

Masters Theses

The pressure increase attributed to the energy deposition in the liquid metal target of the Spallation Neutron Source results in cavitation and pitting erosion of the target pressure boundary. Introducing compressibility in the form of small gas bubbles will extend the lifetime of the target vessel. The pressure rise caused by the beam energy deposition occurs in one microsecond, which encourages use of bubbles of radius less than 20 microns, such that the bubble response to pressure change is adequately fast. Gas volume fraction near 0.5% is sufficient to accommodate the mercury volumetric expansion and reduce the pressure rise. Bubble …


Improving Low Order, Linear, Positive Spatial Quadratures For The Partial Current Neutron Transport Method, John M. Snyder Mar 2010

Improving Low Order, Linear, Positive Spatial Quadratures For The Partial Current Neutron Transport Method, John M. Snyder

Theses and Dissertations

AFIT researchers have developed a new approach to solving Discrete Ordinates equations, which approximate the linear Boltzmann Transport Equation (BTE). The usual approach is von Neumann iteration on the scattering source, which requires repeated sweeps through the spatial-angular grid. Acceptable convergence requires complicated and expensive acceleration schemes. The new approach, Partial-Current Transport (PCT) with Adaptive Distribution Iteration, eliminates scattering source iteration through matrix inversions and a reduced-size global linear algebra problem. It creates the needed matrices directly from the standard spatial quadratures used in the sweeping. Positivity, linearity, and (higher-than-first-order) accuracy are the key desirable qualities with all Discrete Ordinates …


Rubidium Recycling In A High Intensity Short Duration Pulsed Alkali Laser, Wooddy S. Miller Mar 2010

Rubidium Recycling In A High Intensity Short Duration Pulsed Alkali Laser, Wooddy S. Miller

Theses and Dissertations

Laser induced fluorescence was used to study how pump pulse duration and alkali recycle time effects maximum power output in a Diode Pumped Alkali Laser (DPAL) system. A high intensity short pulsed pump source was used to excited rubidium atoms inside a DPAL-type laser. The maximum output power of the laser showed a strong dependence upon the temporal width of the pump pulse in addition to the input pump intensity. A linear relationship was observed between the maximum output power and the pulse width due to the effective lifetime of the excited state, defined as the time it takes for …


Theoretical Proposal For A Biosensing Approach Based On A Linear Array Of Immobilized Gold Nanoparticles, S.M.H. Rafsanjani, T. Cheng, S. Mittler, Chitra Rangan Jan 2010

Theoretical Proposal For A Biosensing Approach Based On A Linear Array Of Immobilized Gold Nanoparticles, S.M.H. Rafsanjani, T. Cheng, S. Mittler, Chitra Rangan

Physics Publications

We propose a sensing mechanism for detection of analytes that can specifically recognized. The sensor is based on closely-spaced chains of functionalized gold nanoparticles (NPs) immobilized on a waveguide surface, with the signal detected by evanescent waveguide absorption spectroscopy. The localized surface plasmon spectrum of a linear array of closely-spaced, hemispherical gold NPs is calculated using the discrete dipole approximation. The plasmon band is found to broaden to a nanowirelike spectrum when a dielectric coating is put on the particles, and the light polarization is along the NP chain. The origin of this broadening is shown to be the polarization-dependent …


Unusual Resistance Hysteresis In N-Layer Graphene Field Effect Transistors Fabricated On Ferroelectric Pb(Zr0.2ti0.8)O3, X. Hong, J. Hoffman, A. Posadas, K. Zou, C. H. Ahn, J. Zhu Jan 2010

Unusual Resistance Hysteresis In N-Layer Graphene Field Effect Transistors Fabricated On Ferroelectric Pb(Zr0.2ti0.8)O3, X. Hong, J. Hoffman, A. Posadas, K. Zou, C. H. Ahn, J. Zhu

Xia Hong Publications

We have fabricated n-layer graphene field effect transistors on epitaxial ferroelectric Pb(Zr0.2Ti0.8)O3 (PZT) thin films. At low gate voltages, PZT behaves as a high-k dielectric with k up to 100. An unusual resistance hysteresis occurs in gate sweeps at high voltages, with its direction opposite to that expected from the polarization switching of PZT. The relaxation of the metastable state is thermally activated, with an activation barrier of 50–110 meV and a time constant of 6 h at 300 K. We attribute its origin to the slow dissociation/recombination dynamics of water molecules adsorbed at …


Deposition Of High-Quality Hfo2 On Graphene And The Effect Of Remote Oxide Phonon Scattering, K. Zou, X. Hong, D. Keefer, J. Zhu Jan 2010

Deposition Of High-Quality Hfo2 On Graphene And The Effect Of Remote Oxide Phonon Scattering, K. Zou, X. Hong, D. Keefer, J. Zhu

Xia Hong Publications

We demonstrate atomic layer deposition of high-quality dielectric HfO2 films on graphene and determine the magnitude of remote oxide surface phonon scattering in dual-oxide structures. The carrier mobility in these HfO2-covered graphene samples reaches 20 000 cm2/Vs at low temperature. Distinct contributions to the resistivity from surface optical phonons in the SiO2 substrate and the HfO2 overlayer are isolated. At 300 K, surface phonon modes of the HfO2 film centered at 54 meV limit the mobility to approximately 20 000 cm2/Vs.


Magnetodielectric Coupling Of Infrared Phonons In Single-Crystal Cu2oseo3, K. H. Miller, X. S. Xu, H. Berger, E. S. Knowles, D. J. Arenas, M. W. Meisel, D. B. Tanner Jan 2010

Magnetodielectric Coupling Of Infrared Phonons In Single-Crystal Cu2oseo3, K. H. Miller, X. S. Xu, H. Berger, E. S. Knowles, D. J. Arenas, M. W. Meisel, D. B. Tanner

Xiaoshan Xu Papers

Reflection and transmission as a function of temperature (5–300 K) have been measured on a single crystal of the magnetoelectric ferrimagnetic compound Cu2OSeO3 utilizing light spanning the far infrared to the visible portions of the electromagnetic spectrum. The complex dielectric function and optical properties were obtained via Kramers-Kronig analysis and by fits to a Drude-Lortentz model. The fits of the infrared phonons show a magnetodielectric effect near the transition temperature (Tc~60 K). Assignments to strong far-infrared phonon modes have been made, especially those exhibiting anomalous behavior around the transition temperature.


Dynamical Theory Calculations Of Spin-Echo Resolved Grazing-Incidence Scattering From A Diffraction Grating, Rana Ashkar, P. Stonaha, A. L. Washington, V. R. Shah, M. R. Fitzsimmons, B. Maranville, C. F. Majkrzak, W. T. Lee, W. L. Schaich, Roger Pynn Jan 2010

Dynamical Theory Calculations Of Spin-Echo Resolved Grazing-Incidence Scattering From A Diffraction Grating, Rana Ashkar, P. Stonaha, A. L. Washington, V. R. Shah, M. R. Fitzsimmons, B. Maranville, C. F. Majkrzak, W. T. Lee, W. L. Schaich, Roger Pynn

Nebraska Center for Materials and Nanoscience: Faculty Publications

Neutrons scattered or reflected from a diffraction grating are subject to a periodic potential analogous to the potential experienced by electrons within a crystal. Hence, the wavefunction of the neutrons can be expanded in terms of Bloch waves and a dynamical theory can be applied to interpret the scattering phenomenon. In this paper, a dynamical theory is used to calculate the results of neutron spin-echo resolved grazing-incidence scattering (SERGIS) from a silicon diffraction grating with a rectangular profile. The calculations are compared with SERGIS measurements made on the same grating at two neutron sources: a pulsed source and a continuous …


Local Fractional Fourier’S Transform Based On The Local Fractional Calculus, Yang Xiao-Jun Jan 2010

Local Fractional Fourier’S Transform Based On The Local Fractional Calculus, Yang Xiao-Jun

Xiao-Jun Yang

A new modeling for the local fractional Fourier’s transform containing the local fractional calculus is investigated in fractional space. The properties of the local fractional Fourier’s transform are obtained and two examples for the local fractional systems are investigated in detail.


Grafika Inżynierska Ćw., Wojciech M. Budzianowski Jan 2010

Grafika Inżynierska Ćw., Wojciech M. Budzianowski

Wojciech Budzianowski

No abstract provided.


Projektowanie Procesów Biotechnologicznych Proj., Wojciech M. Budzianowski Jan 2010

Projektowanie Procesów Biotechnologicznych Proj., Wojciech M. Budzianowski

Wojciech Budzianowski

No abstract provided.


Projektowanie I Optymalizacja Procesów Proj., Wojciech M. Budzianowski Jan 2010

Projektowanie I Optymalizacja Procesów Proj., Wojciech M. Budzianowski

Wojciech Budzianowski

No abstract provided.


Metody Numeryczne Lab., Wojciech M. Budzianowski Jan 2010

Metody Numeryczne Lab., Wojciech M. Budzianowski

Wojciech Budzianowski

No abstract provided.


Odnawialne Źródła Energii W., Wojciech M. Budzianowski Jan 2010

Odnawialne Źródła Energii W., Wojciech M. Budzianowski

Wojciech Budzianowski

No abstract provided.


Interphase Energies Of Hcp Precipitates In Fcc Metals: A Density-Functional Theory Study In Al-Ag, Daniel Finkenstadt, Duane D. Johnson Jan 2010

Interphase Energies Of Hcp Precipitates In Fcc Metals: A Density-Functional Theory Study In Al-Ag, Daniel Finkenstadt, Duane D. Johnson

Duane D. Johnson

Density-functional theory (DFT) calculations of interphase boundary energies relevant to hexagonal-close-packed (hcp) γ-precipitate formation were performed within approximate unit cells that mirror the experimental conditions in face-centered-cubic (fcc) Al-Ag solid solutions. In Al-rich, fcc Al-Ag, γ precipitates are observed to form rapidly with large (300+) aspect ratios even though the Al stacking-fault energy is high (approximately 130 mJ/m2), which should suppress hcp ribbon formation according to standard arguments. Our DFT results show why high-aspect ratio plates occur and why previous estimates based on Wulff construction were orders of magnitude less than observed values. Using DFT, we obtain a Gibbs free-energy …


Lattice Dynamical Probe Of Charge Order And Antipolar Bilayer Stacking In Lufe2o4, X. S. Xu, J. De Groot, Q.-C. Sun, B. C. Sales, D. Mandrus, M. Angst, A. P. Litvinchuk, J. L. Musfeldt Jan 2010

Lattice Dynamical Probe Of Charge Order And Antipolar Bilayer Stacking In Lufe2o4, X. S. Xu, J. De Groot, Q.-C. Sun, B. C. Sales, D. Mandrus, M. Angst, A. P. Litvinchuk, J. L. Musfeldt

Xiaoshan Xu Papers

We investigated the infrared response of LuFe2O4 through the series of charge, magnetic, and structural transitions. All vibrational modes couple strongly to the charge order, whereas the LuO zone-folding modes are also sensitive to magnetic order and structural distortion. The dramatic splitting of the LuO2 layer mode is attributed to charge-rich/poor proximity effects and its temperature dependence reveals the antipolar nature of the W layer pattern.


Optical Properties Of Quasi-Tetragonal Bifeo3 Thin Films, P. Chen, N. J. Podraza, X. S. Xu, A. Melville, E. Vlahos, V. Gopalan, R. Ramesh, D. G. Schlom, J. L. Musfeldt Jan 2010

Optical Properties Of Quasi-Tetragonal Bifeo3 Thin Films, P. Chen, N. J. Podraza, X. S. Xu, A. Melville, E. Vlahos, V. Gopalan, R. Ramesh, D. G. Schlom, J. L. Musfeldt

Xiaoshan Xu Papers

Optical transmission spectroscopy and spectroscopic ellipsometry were used to extract the optical properties of an epitaxially grown quasi-tetragonal BiFeO3 thin film in the near infrared to near ultraviolet range. The absorption spectrum is overall blue shifted compared with that of rhombohedral BiFeO3, with an absorption onset near 2.25 eV, a direct 3.1 eV band gap, and charge transfer excitations that are ~0.4 eV higher than those of the rhombohedral counterpart. We interpret these results in terms of structural strain and local symmetry breaking.


Tunable Band Gap In Bi(Fe1−Xmnx)O3 Films, X. S. Xu, J. F. Ihlefeld, J. H. Lee, O. K. Ezekoye, E. Vlahos, R. Ramesh, V. Gopalan, X. Q. Pan, D. G. Schlom, J. L. Musfeldt Jan 2010

Tunable Band Gap In Bi(Fe1−Xmnx)O3 Films, X. S. Xu, J. F. Ihlefeld, J. H. Lee, O. K. Ezekoye, E. Vlahos, R. Ramesh, V. Gopalan, X. Q. Pan, D. G. Schlom, J. L. Musfeldt

Xiaoshan Xu Papers

In order to investigate band gap tunability in polar oxides, we measured the optical properties of a series of Bi(Fe1−xMnx)O3 thin films. The absorption response of the mixed metal solid solutions is approximately a linear combination of the characteristics of the two end members, a result that demonstrates straightforward band gap tunability in this system.


Adsorption-Controlled Growth Of Bimno3 Films By Molecular-Beam Epitaxy, J. H. Lee, X. Ke, R. Misra, J. F. Ihlefeld, X. S. Xu, Z. G. Mei, T. Heeg, M. Roeckerath, J. Schubert, Z. K. Liu, J. L. Musfeldt, P. Schiffer, D. G. Schlom Jan 2010

Adsorption-Controlled Growth Of Bimno3 Films By Molecular-Beam Epitaxy, J. H. Lee, X. Ke, R. Misra, J. F. Ihlefeld, X. S. Xu, Z. G. Mei, T. Heeg, M. Roeckerath, J. Schubert, Z. K. Liu, J. L. Musfeldt, P. Schiffer, D. G. Schlom

Xiaoshan Xu Papers

We have developed the means to grow BiMnO3 thin films with unparalleled structural perfection by reactive molecular-beam epitaxy and determined its band gap. Film growth occurs in an adsorption-controlled growth regime. Within this growth window bounded by oxygen pressure and substrate temperature at a fixed bismuth overpressure, single-phase films of the metastable perovskite BiMnO3 may be grown by epitaxial stabilization. X-ray diffraction reveals phase-pure and epitaxial films with w rocking curve full width at half maximum values as narrow as 11 arc sec (0.003°). Optical absorption measurements reveal that BiMnO3 has a direct band gap of 1.1±0.1 …


Design Sensitivities Of The Superconducting Parallel-Bar Cavity, Subashini U. De Silva, Jean Delayen Jan 2010

Design Sensitivities Of The Superconducting Parallel-Bar Cavity, Subashini U. De Silva, Jean Delayen

Physics Faculty Publications

The superconducting parallel-bar cavity has properties that makes it attractive as a deflecting or crabbing rf structure. For example it is under consideration as an rf separator for the Jefferson Lab 12 GeV upgrade and as a crabbing structure for a possible LHC luminosity upgrade. In order to maintain the purity of the deflecting mode and avoid mixing with the near accelerating mode caused by geometrical imperfection, a minimum frequency separation is needed which depends on the expected deviations from perfect symmetry. We have done an extensive analysis of the impact of several geometrical imperfections on the properties of the …