Open Access. Powered by Scholars. Published by Universities.®

Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 10 of 10

Full-Text Articles in Physics

Utilizing Inverse Design To Create Plasmonic Waveguide Devices, Michael Efseaff, Kyle Wynne, Mark C. Harrison Mar 2023

Utilizing Inverse Design To Create Plasmonic Waveguide Devices, Michael Efseaff, Kyle Wynne, Mark C. Harrison

Engineering Faculty Articles and Research

In modern communications networks, data is transmitted over long distances using optical fibers. At nodes in the network, the data is converted to an electrical signal to be processed, and then converted back into an optical signal to be sent over fiber optics. This process results in higher power consumption and adds to transmission time. However, by processing the data optically, we can begin to alleviate these issues and surpass systems which rely on electronics. One promising approach for this is plasmonic devices. Plasmonic waveguide devices have smaller footprints than silicon photonics for more compact photonic integrated circuits, although they …


Fabricating Nanophotonic Devices Using Nanofabrication Techniques, Scott Cummings Dec 2021

Fabricating Nanophotonic Devices Using Nanofabrication Techniques, Scott Cummings

Student Scholar Symposium Abstracts and Posters

Nanofabrication processes are widely used to make the integrated circuits and computer chips that are ubiquitous in today’s technology. These fabrication processes can also be applied to the creation of nanophotonic devices. The ways in which we apply these fabrication techniques in the field of photonics is often constrained by the technologies used for electronics manufacturing which presents an interesting engineering challenge. These limitations include availability and cost of certain fabrication equipment and techniques required to create state-of-the-art nanophotonic devices. Through work with the University of California Irvine nano-fabrication cleanroom, we designed and fabricated various integrated photonic components including grating …


A Hybrid Achromatic Metalens, Fatih Balli, Mansoor A. Sultan, Sarah K. Lami, J. Todd Hastings Aug 2020

A Hybrid Achromatic Metalens, Fatih Balli, Mansoor A. Sultan, Sarah K. Lami, J. Todd Hastings

Electrical and Computer Engineering Faculty Publications

Metalenses, ultra-thin optical elements that focus light using subwavelength structures, have been the subject of a number of recent investigations. Compared to their refractive counterparts, metalenses offer reduced size and weight, and new functionality such as polarization control. However, metalenses that correct chromatic aberration also suffer from markedly reduced focusing efficiency. Here we introduce a Hybrid Achromatic Metalens (HAML) that overcomes this trade-off and offers improved focusing efficiency over a broad wavelength range from 1000-1800 nm. HAMLs can be designed by combining recursive ray-tracing and simulated phase libraries rather than computationally intensive global search algorithms. Moreover, HAMLs can be fabricated …


3d Plasmonic Design Approach For Efficient Transmissive Huygens Metasurfaces, Bryan M. Adomanis, D. Bruce Burckel, Michael A. Marciniak Jul 2019

3d Plasmonic Design Approach For Efficient Transmissive Huygens Metasurfaces, Bryan M. Adomanis, D. Bruce Burckel, Michael A. Marciniak

Faculty Publications

In this paper we present a design concept for 3D plasmonic scatterers as high- efficiency transmissive metasurface (MS) building blocks. A genetic algorithm (GA) routine partitions the faces of the walls inside an open cavity into a M x N grid of voxels which can be either covered with metal or left bare, and optimizes the distribution of metal coverage needed to generate electric and magnetic modes of equal strength with a targeted phase delay (Φt) at the design wavelength. Even though the electric and magnetic modes can be more complicated than typical low order modes, with their spectral overlap …


Plasmonic Devices Based On Transparent Conducting Oxides For Near Infrared Applications, Kim Jongbum Dec 2016

Plasmonic Devices Based On Transparent Conducting Oxides For Near Infrared Applications, Kim Jongbum

Open Access Dissertations

In the past decade, there have been many breakthroughs in the field of plasmonics and nanophotonics that have enabled optical devices with unprecedented functionalities. Even though remarkable demonstration of at photonic devices has been reported, constituent materials are limited to the noble metals such as gold (Au) and silver (Ag) due to their abundance of free electrons which enable the support of plasmon resonances in the visible range. With the strong demand for extension of the optical range of plasmonic applications, it is now a necessity to explore and develop alternative materials which can overcome intrinsic issues of noble metals …


Photonicstd-2d: Modeling Light Scattering In Periodic Multilayer Photonic Structures, Alexey Bondarev, Shaimaa Azzam, Zhaxylyk Kudyshev, Alexander V. Kildishev Aug 2016

Photonicstd-2d: Modeling Light Scattering In Periodic Multilayer Photonic Structures, Alexey Bondarev, Shaimaa Azzam, Zhaxylyk Kudyshev, Alexander V. Kildishev

The Summer Undergraduate Research Fellowship (SURF) Symposium

Efficient modeling of electromagnetic processes in optical and plasmonic metamaterials is important for enabling new and exciting ways to manipulate light for advanced applications. In this work, we put together a tool for numerical simulation of propagation of normally incident light through a nanostructured multilayer composite material. The user builds a unit cell of a given material layer-by-layer starting from a substrate up to a superstrate, splitting each layer further into segments. The segments are defined by width and material -- dielectric, metal or active medium. Simulations are performed with the finite difference time domain (FDTD) method. A database of …


Nanoscale Control Of Gap-Plasmon Enhanced Optical Processes, Chatdanai Lumdee Jan 2015

Nanoscale Control Of Gap-Plasmon Enhanced Optical Processes, Chatdanai Lumdee

Electronic Theses and Dissertations

Surface plasmon resonances of metal nanostructures have been studied intensely in recent years. The strong plasmon-mediated electric field enhancement and field confinement well beyond the diffraction limit has been demonstrated to improve the performance of optical devices including ultrasensitive sensors, light emitters, and optical absorbers. A plasmon resonance mode of particular recent interest is the gap plasmon resonance that occurs on closely spaced metallic structures. In contrast to plasmon resonances supported by isolated metal nanostructures, coupled nanostructures provide additional spectral and spatial control over the plasmon resonance response. For example, the resonance frequencies of metal nanoparticle dimers depend strongly on …


Ultrathin, Ultrasmooth And Low-Loss Silver Films Via Wetting And Annealing, Weiqiang Chen, Kuo-Ping Chen, Mark Daniel Thoreson, Alexander Kildishev, Vladimir M. Shalaev Jan 2010

Ultrathin, Ultrasmooth And Low-Loss Silver Films Via Wetting And Annealing, Weiqiang Chen, Kuo-Ping Chen, Mark Daniel Thoreson, Alexander Kildishev, Vladimir M. Shalaev

Weiqiang Chen

We have demonstrated that a thermal annealing treatment can reduce the optical losses in ultrathin, ultrasmooth, silver films deposited on a Ge wetting layer to values as low as the bulk material value and at the same time maintain an ultrasmooth surface. The annealing effect is sensitive to the annealing temperature and time, both of which should be carefully controlled. This annealing treatment is also effective for Ag–SiO2 multilayer composite films.


Toward Superlensing With Metal-Dielectric Composites And Multilayers, Rasmus Bundgaard Nielsen, Mark Thoreson, Weiqiang Chen, Anders Kristensen, Jørn Hvam, Vladimir M. Shalaev, Alexandra Boltasseva Jan 2010

Toward Superlensing With Metal-Dielectric Composites And Multilayers, Rasmus Bundgaard Nielsen, Mark Thoreson, Weiqiang Chen, Anders Kristensen, Jørn Hvam, Vladimir M. Shalaev, Alexandra Boltasseva

Weiqiang Chen

We report on the fabrication of two types of adjustable, near-field superlens designs: metal–dielectric composites and metal–dielectric multilayer films. We fabricated a variety of films with different materials, thicknesses and compositions. These samples were characterized physically and optically to determine their film composition, quality, and optical responses. Our results on metal–dielectric composites indicate that although the real part of the effective permittivity generally follows effective medium theory predictions, the imaginary part does not and substantially higher losses are observed. Going forward, it appears that multilayer metal–dielectric designs are more suitable for sub-diffraction imaging applications because they could provide both tunability …


Fabrication And Optical Characterizations Of Smooth Silver-Silica Nanocomposite Films, Weiqiang Chen, Mark Daniel Thoreson, Alexander V. Kildishev, Vladimir Shalaev Jan 2010

Fabrication And Optical Characterizations Of Smooth Silver-Silica Nanocomposite Films, Weiqiang Chen, Mark Daniel Thoreson, Alexander V. Kildishev, Vladimir Shalaev

Weiqiang Chen

We have studied the surface-smoothing effect of an ultrathin germanium (Ge) layer on silver (Ag)-silica (SiO2) nanocomposite films for superlensing applications. Our experimental results indicate that inserting a thin Ge layer below the silver-silica composite films can reduce the final surface root-mean-squared (RMS) roughness to under 1 nm. Additionally, the metal nanostructure plays a role in both the smoothing effect and the optical properties of the nanocomposite films. Our experimental results show that the Bruggeman effective medium theory (EMT) is not sufficiently accurate to describe some properties of our nanocomposite films. In addition to the constituent materials and their filling …