Open Access. Powered by Scholars. Published by Universities.®

Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 11 of 11

Full-Text Articles in Physics

Exploring The Electrical Properties Of Twisted Bilayer Graphene, William Shannon May 2019

Exploring The Electrical Properties Of Twisted Bilayer Graphene, William Shannon

Senior Theses

Two-dimensional materials exhibit properties unlike anything else seen in conventional substances. Electrons in these materials are confined to move only in the plane. In order to explore the effects of these materials, we have built apparatus and refined procedures with which to create two-dimensional structures. Two-dimensional devices have been made using exfoliated graphene and placed on gold contacts. Their topography has been observed using Atomic Force Microscopy (AFM) confirming samples with monolayer, bilayer, and twisted bilayer structure. Relative work functions of each have been measured using Kelvin Probe Force Microscopy (KPFM) showing that twisted bilayer graphene has a surface potential …


Effects Of Edge Inclination Angles On Whispering-Gallery Modes In Printable Wedge Microdisk Lasers, Cong Chen, Lei Wan, Hengky Chandrahalim Jan 2018

Effects Of Edge Inclination Angles On Whispering-Gallery Modes In Printable Wedge Microdisk Lasers, Cong Chen, Lei Wan, Hengky Chandrahalim

Faculty Publications

The ink-jet technique was developed to print the wedge polymer microdisk lasers. The characterization of these lasers was implemented using a free-space optics measurement setup. It was found that disks of larger edge inclination angles have a larger free spectral range (FSR) and a lower resonance wavelength difference between the fundamental transverse electric (TE) and transverse magnetic (TM) whispering-gallery modes (WGMs). This behavior was also confirmed with simulations based on the modified Oxborrow’s model with perfectly matched layers (PMLs), which was adopted to accurately calculate the eigenfrequencies, electric field distributions, and quality parameters of modes in the axisymmetric microdisk resonators. …


Properties Of Cu(In,Ga,Al)Se² Thin Films Fabricated By Magnetron Sputtering, Talaat A. Hameed, Wei Cao, Bahiga A. Mansour, Inas K. Elzawaway, El-Metwally M. Abdelrazek, Hani E. Elsayed-Ali Jan 2015

Properties Of Cu(In,Ga,Al)Se² Thin Films Fabricated By Magnetron Sputtering, Talaat A. Hameed, Wei Cao, Bahiga A. Mansour, Inas K. Elzawaway, El-Metwally M. Abdelrazek, Hani E. Elsayed-Ali

Applied Research Center Publications

Cu (In,Ga,Al)Se2 (CIGAS) thin films were studied as an alternative absorber layer material to Cu(InxGa1-x)Se2. CIGAS thin films with varying Al content were prepared by magnetron sputtering on Si(100) and soda-lime glass substrates at 350 °C, followed by postdeposition annealing at 520 °C for 5 h in vacuum. The film composition was measured by an electron probe microanalyzer while the elemental depth profiles were determined by secondary ion mass spectrometry. X-ray diffraction studies indicated that CIGAS films are single phase with chalcopyrite structure and that the (112) peak clearly shifts to higher 2θ …


Optically Induced Forces In Scanning Probe Microscopy, Dana Kohlgraf-Owens Jan 2013

Optically Induced Forces In Scanning Probe Microscopy, Dana Kohlgraf-Owens

Electronic Theses and Dissertations

The focus of this dissertation is the study of measuring light not by energy transfer as is done with a standard photodetector such as a photographic film or charged coupled device, but rather by the forces which the light exerts on matter. In this manner we are able to replace or complement standard photodetector-based light detection techniques. One key attribute of force detection is that it permits the measurement of light over a very large range of frequencies including those which are difficult to access with standard photodetectors, such as the far IR and THz. The dissertation addresses the specific …


Low Temperature Epitaxial Growth Of Ge Quantum Dot On Si (100) - (2×1) By Femtosecond Laser Excitation, Ali Oguz Er, Wei Ren, Hani E. Elsayed-Ali Jan 2011

Low Temperature Epitaxial Growth Of Ge Quantum Dot On Si (100) - (2×1) By Femtosecond Laser Excitation, Ali Oguz Er, Wei Ren, Hani E. Elsayed-Ali

Electrical & Computer Engineering Faculty Publications

Low temperature epitaxy of Ge quantum dots on Si (100) - (2×1) by femtosecond pulsed laser deposition under femtosecond laser excitation was investigated. Reflection high-energy electron diffraction and atomic force microscopy were used to analyze the growth mode and morphology. Epitaxial growth was achieved at ∼70 °C by using femtosecond laser excitation of the substrate. A purely electronic mechanism of enhanced surface diffusion of the Ge adatoms is proposed. © 2011 American Institute of Physics. [doi:10.1063/1.3537813]


Electronically Enhanced Surface Diffusion During Ge Growth On Si(100), Ali Orguz Er, Hani E. Elsayed-Ali Jan 2011

Electronically Enhanced Surface Diffusion During Ge Growth On Si(100), Ali Orguz Er, Hani E. Elsayed-Ali

Physics Faculty Publications

The effect of nanosecond pulsed laser excitation on surface diffusion during the growth of Ge on Si(100) at 250 °C was studied. In situ reflection high-energy electron diffraction was used to measure the surface diffusion coefficient while ex situ atomic force microscopy was used to probe the structure and morphology of the grown quantum dots. The results show that laser excitation of the substrate increases the surface diffusion during the growth of Ge on Si(100), changes the growth morphology, improves the crystalline structure of the grown quantum dots, and decreases their size distribution. A purely electronic mechanism of enhanced surface …


Excitation-Induced Germanium Quantum Dot Formation On Si (100)-(2×1), Ali Oguz Er, Hani E. Elsayed-Ali Jan 2010

Excitation-Induced Germanium Quantum Dot Formation On Si (100)-(2×1), Ali Oguz Er, Hani E. Elsayed-Ali

Physics Faculty Publications

The effect of nanosecond pulsed laser excitation on the self-assembly of Ge quantum dots grown by pulsed laser deposition on Si (100)-(2×1) was studied. In situ reflection high-energy electron diffraction and ex situ atomic force microscopy were used to probe the quantum dot structure and morphology. At room temperature, applying the excitation laser decreased the surface roughness of the grown Ge film. With surface electronic excitation, crystalline Ge quantum dots were formed at 250 °C, a temperature too low for their formation without excitation. At a substrate temperature of 390 °C, electronic excitation during growth was found to improve the …


Formation Of In- (2×1) And In Islands On Si (100) - (2×1) By Femtosecond Pulsed Laser Deposition, M. A. Hafez, H. E. Elsayed-Ali Jan 2007

Formation Of In- (2×1) And In Islands On Si (100) - (2×1) By Femtosecond Pulsed Laser Deposition, M. A. Hafez, H. E. Elsayed-Ali

Electrical & Computer Engineering Faculty Publications

The growth of indium on a vicinal Si (100) - (2×1) surface at room temperature by femtosecond pulsed laser deposition (fsPLD) was investigated by in situ reflection high-energy electron diffraction (RHEED). Recovery of the RHEED intensity was observed between laser pulses and when the growth was terminated. The surface diffusion coefficient of deposited In on initial two-dimensional (2D) In- (2×1) layer was determined. As growth proceeds, three-dimensional In islands grew on the 2D In- (2×1) layer. The RHEED specular profile was analyzed during film growth, while the grown In islands were examined by ex situ atomic force microscopy. The full …


Melting And Solidification Study Of As-Deposited And Recrystallized Bi Thin Films, M. K. Zayed, H. E. Elsayed-Ali Jan 2006

Melting And Solidification Study Of As-Deposited And Recrystallized Bi Thin Films, M. K. Zayed, H. E. Elsayed-Ali

Electrical & Computer Engineering Faculty Publications

Melting and solidification of as-deposited and recrystallized Bi crystallites, deposited on highly oriented 002-graphite at 423 K, were studied using reflection high-energy electron diffraction (RHEED). Films with mean thickness between 1.5 and 33 ML (monolayers) were studied. Ex situ atomic force microscopy was used to study the morphology and the size distribution of the formed nanocrystals. The as-deposited films grew in the form of three-dimensional crystallites with different shapes and sizes, while those recrystallized from the melt were formed in nearly similar shapes but different sizes. The change in the RHEED pattern with temperature was used to probe the melting …


Self-Assembly Of Ge Quantum Dots On Si(100)- 2×1 By Pulsed Laser Deposition, M. S. Hegazy, H. E. Elsayed-Ali Jan 2005

Self-Assembly Of Ge Quantum Dots On Si(100)- 2×1 By Pulsed Laser Deposition, M. S. Hegazy, H. E. Elsayed-Ali

Electrical & Computer Engineering Faculty Publications

Self-assembled Ge quantum dots are grown on Si(100)- 2×1 by pulsed laser deposition. The growth is studied by in situ reflection high-energy electron diffraction and postdeposition atomic force microscopy. After the completion of the wetting layer, transient hut clusters, faceted by different planes, are observed. When the height of these clusters exceeded a certain value, the facets developed into {305} planes. Some of these huts become {305}-faceted pyramids as the film mean thickness was increased. With further thickness increase, dome clusters developed on the expense of these pyramids. © 2005 American Institute of Physics. [DOI: 10.1063/1.1949285]


Condensation On (002) Graphite Of Liquid Bismuth Far Below Its Bulk Melting Point, M. K. Zayed, H. E. Elsayed-Ali Jan 2005

Condensation On (002) Graphite Of Liquid Bismuth Far Below Its Bulk Melting Point, M. K. Zayed, H. E. Elsayed-Ali

Electrical & Computer Engineering Faculty Publications

Condensation of thermally evaporated Bi on (002) graphite, at temperatures of 300-523K, was studied using in situ reflection high-energy electron diffraction (RHEED) and room temperature ex situ atomic force microscopy (AFM). For deposition at temperatures below 415±5K, transmission RHEED patterns of Bi appeared at an average thickness of ∼0.5 monolayer (ML). AFM images showed that the film consisted of crystallites in the shape of triangular step pyramids with step heights corresponding to single and double Bi layers in the [111] direction. This morphology indicates crystallization from the vapor. For deposition at higher temperatures, diffuse RHEED patterns appeared independent of the …