Open Access. Powered by Scholars. Published by Universities.®

Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 2 of 2

Full-Text Articles in Physics

An Organic Mixed Ion-Electron Conductor For Power Electronics, Abdellah Malti, Jesper Edberg, Hjalmar Granberg, Zia Ullah Khan, Jens W. Andreasen, Xianjie Liu, Dan Zhao, Hao Zhang, Yulong Yao, Joseph W. Brill, Isak Engquist, Mats Fahlman, Lars Wågberg, Xavier Crispin, Magnus Berggren Dec 2015

An Organic Mixed Ion-Electron Conductor For Power Electronics, Abdellah Malti, Jesper Edberg, Hjalmar Granberg, Zia Ullah Khan, Jens W. Andreasen, Xianjie Liu, Dan Zhao, Hao Zhang, Yulong Yao, Joseph W. Brill, Isak Engquist, Mats Fahlman, Lars Wågberg, Xavier Crispin, Magnus Berggren

Physics and Astronomy Faculty Publications

A mixed ionic–electronic conductor based on nanofibrillated cellulose composited with poly(3,4-ethylene-dioxythio­phene):­poly(styrene-sulfonate) along with high boiling point solvents is demonstrated in bulky electrochemical devices. The high electronic and ionic conductivities of the resulting nanopaper are exploited in devices which exhibit record values for the charge storage capacitance (1F) in supercapacitors and transconductance (1S) in electrochemical transistors.


Carbide-Derived Carbon By Electrochemical Etching Of Vanadium Carbides, Luis G.B. Camargo, Benjamin G. Palazzo, Greg Taylor, Zach A. Norris, Yash K. Patel, Jeffrey D. Hettinger, Lei Yu Aug 2015

Carbide-Derived Carbon By Electrochemical Etching Of Vanadium Carbides, Luis G.B. Camargo, Benjamin G. Palazzo, Greg Taylor, Zach A. Norris, Yash K. Patel, Jeffrey D. Hettinger, Lei Yu

Faculty Scholarship for the College of Science & Mathematics

Carbide-derived Carbon (CDC) has been demonstrated to be an excellent electrode material for electrochemical devices including supercapacitors due to its chemical and electrochemical stability, large specific surface area and controllable pore size and morphology. Currently, CDC is prepared from metal carbides by chlorination in a chlorine gas atmosphere at temperatures of 350°C or higher. In this paper, conversion using electrochemical methods is reported, which can be achieved by oxidizing vanadium carbides (VC or V2C) in aqueous solutions at room temperature and a mild electrode potential to prepare CDC thin film as electrode materials for “on-chip” supercapacitiors. It was …