Open Access. Powered by Scholars. Published by Universities.®

Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 13 of 13

Full-Text Articles in Physics

Optics Studies For Multipass Energy Recovery At Cebaf: Er@Cebaf, Isurumali Neththikumara Oct 2023

Optics Studies For Multipass Energy Recovery At Cebaf: Er@Cebaf, Isurumali Neththikumara

Physics Theses & Dissertations

Energy recovery linacs (ERLs), focus on recycling the kinetic energy of electron beam for the purpose of accelerating a newly injected beam within the same accelerating structure. The rising developments in the super conducting radio frequency technology, ERL technology has achieved several noteworthy milestones over the past few decades. In year 2003, Jefferson Lab has successfully demonstrated a single pass energy recovery at the CEBAF accelerator. Furthermore, they conducted successful experiments with IR-FEL demo and upgrades, as well as the UV FEL driver. This multi-pass, multi-GeV range energy recovery demonstration proposed to be carried out at CEBAF accelerator at Jefferson …


Measurements Of Magnetic Field Penetration Of Materials For Superconducting Radiofrequency Cavities, Iresha Harshani Senevirathne May 2023

Measurements Of Magnetic Field Penetration Of Materials For Superconducting Radiofrequency Cavities, Iresha Harshani Senevirathne

Physics Theses & Dissertations

Superconducting Radio Frequency (SRF) cavities used in particle accelerators are typically formed from or coated with superconducting materials. Currently high purity niobium is the material of choice for SRF cavities which have been optimized to operate near their theoretical field limits. This brings about the need for significant R&D efforts to develop next generation superconducting materials which could outperform Nb and keep up with the demands of new accelerator facilities. To achieve high quality factors and accelerating gradients, the cavity material should be able to remain in the superconducting Meissner state under high RF magnetic field without penetration of quantized …


Development Of High Conductivity Copper Coatings For Srf Cavity, Himal Pokhrel May 2022

Development Of High Conductivity Copper Coatings For Srf Cavity, Himal Pokhrel

Physics Theses & Dissertations

The development of metallic coatings with high purity and high thermal conductivity at cryogenic temperature could be very important for application to the superconducting radiofrequency (SRF) cavity technology. The deposition of such bulk coatings on the outer surface of a niobium cavity could result in higher heat conductance and mechanical stiffness, both of which are crucial for enhancing the cavity performance at a reduced cost.

Cold spray technology was used to deposit bulk coatings of pure copper and copper-tungsten alloys on the niobium substrate and the samples of size 2 mm × 2 mm cross section were cut and subjected …


Development Of Superconducting Spoke Cavities For High-Velocity Applications, Christopher Shawn Hopper Apr 2015

Development Of Superconducting Spoke Cavities For High-Velocity Applications, Christopher Shawn Hopper

Physics Theses & Dissertations

To date, superconducting spoke cavities have been designed, developed, and tested for particle velocities up to β0 ~ 0.6, but there is a growing interest in possible applications of spoke cavities for high-velocity applications. The first task is to explore the design parameter space for low-frequency, high-velocity, single- and double-spoke superconducting cavities in order to determine how each design parameter affects the electromagnetic properties, in particular the surface electromagnetic fields and the shunt impedance. Once an electromagnetically optimized, high-velocity spoke cavity is designed, there are several other characteristics that need to be investigated. These include multipacting scenarios, higher-order mode excitation …


Investigation And Optimization Of A New Compact Superconducting Cavity For Deflecting And Crabbing Applications, Subashini Uddika De Silva Jul 2014

Investigation And Optimization Of A New Compact Superconducting Cavity For Deflecting And Crabbing Applications, Subashini Uddika De Silva

Physics Theses & Dissertations

Deflecting and crabbing structures have many applications in current accelerator systems. The primary use of a deflecting cavity is to separate a single beam into multiple beams. A crabbing cavity enables the head-on collision at the interaction point in particle colliders in order to increase the luminosity. The early uses of the deflecting structures have been in the early 1960s: these structures were disk loaded structures operating at room temperature. The crabbing structure which was installed at the NEK electron-positron collider was the first and only operational superconducting cavity of that kind. The most common design of superconducting deflecting and …


Application Of Chebyshev Formalism To Identify Nonlinear Magnetic Field Components In Beam Transport System, Michael Spata Jul 2012

Application Of Chebyshev Formalism To Identify Nonlinear Magnetic Field Components In Beam Transport System, Michael Spata

Physics Theses & Dissertations

An experiment was conducted at Jefferson Lab's Continuous Electron Beam Accelerator Facility to develop a beam-based technique for characterizing the extent of the nonlinearity of the magnetic fields of a beam transport system. Horizontally and vertically oriented pairs of air-core kicker magnets were simultaneously driven at two different frequencies to provide a time-dependent transverse modulation of the beam orbit relative to the unperturbed reference orbit. Fourier decomposition of the position data at eight different points along the beamline was then used to measure the amplitude of these frequencies. For a purely linear transport system one expects to find solely the …


Compensation Techniques In Accelerator Physics, Hisham Kamal Sayed Apr 2011

Compensation Techniques In Accelerator Physics, Hisham Kamal Sayed

Physics Theses & Dissertations

Accelerator physics is one of the most diverse multidisciplinary fields of physics, wherein the dynamics of particle beams is studied. It takes more than the understanding of basic electromagnetic interactions to be able to predict the beam dynamics, and to be able to develop new techniques to produce, maintain and deliver high quality beams for different applications. In this work, some basic theory regarding particle beam dynamics in accelerators will be presented. This basic theory, along with applying state of the art techniques in beam dynamics will be used in this dissertation to study and solve accelerator physics problems. Two …


Nuclear Electromagnetic Currents In Chiral Effective Field Theory, Saori Pastore Apr 2010

Nuclear Electromagnetic Currents In Chiral Effective Field Theory, Saori Pastore

Physics Theses & Dissertations

A nucleon-nucleon potential and consistent nuclear electromagnetic currents are derived in chiral effective field theory retaining pions and nucleons as explicit degrees of freedom. The calculation of the potential is carried out up to next-to-next-to leading order (N2LO), while the currents include up to N3LO corrections. The potential at N2 LO and currents at N3LO consist of two-pion-exchange and contact contributions. The currents are then utilized to study a number of low-energy electromagnetic observables induced by magnetic dipole transitions, such as the deuteron and trinucleon magnetic moments and the np, nd and n …


Investigation Of The Superconducting Properties Of Niobium Radio-Frequency Cavities, Gianluigi Ciovati Jul 2005

Investigation Of The Superconducting Properties Of Niobium Radio-Frequency Cavities, Gianluigi Ciovati

Physics Theses & Dissertations

Radio-frequency (rf) superconducting cavities are widely used to increase the energy of a charged particle beam in particle accelerators. The maximum gradients of cavities made of bulk niobium have constantly improved over the last ten years and they are approaching the theoretical limit of the material. Nevertheless, rf tests of niobium cavities are still showing some "anomalous" losses (so-called "Q-drop"), characterized by a marked increase of the surface resistance at high rf fields, in absence of field emission. A low temperature "in-situ" baking under ultra-high vacuum has been successfully applied by several laboratories to reduce those losses and …


Field Emission Based Sensors Using Carbon Nanotubes, Changkun Dong Apr 2003

Field Emission Based Sensors Using Carbon Nanotubes, Changkun Dong

Physics Theses & Dissertations

A number of sensitive applications would be greatly benefited by the development of better cold cathodes that employ the electron field emission process. Among the many kinds of field emitters that could be tried, carbon nanotubes (CNT) have a number of distinct advantages because of their unique geometrical structure, chemical inertness, mechanical stiffness, and high thermal and electrical conductivities. This dissertation describes research in which CNT cathodes were fabricated and their emission characteristics were measured.

Multi-walled carbon nanotubes (MWNT) were grown by chemical vapor deposition (CVD) on various substrates: Ni and Hastelloy gauze, 304 stainless steel (SS) plates, and Ni-coated …


Surface Resistance Measurements Of Superconducting Niobium Samples With A Triaxial Cavity, Paul Martin Boccard Jan 1999

Surface Resistance Measurements Of Superconducting Niobium Samples With A Triaxial Cavity, Paul Martin Boccard

Physics Theses & Dissertations

This experimental study has revealed and investigated many of the physical issues that affect accurate measurement of the surface resistance for small samples consisting of superconducting niobium films on copper substrates. It is believed that this work provides the groundwork for future research directed towards solving this important problem. Accurate measurement of surface resistance for such samples is needed to allow the rapid evaluation and optimization of the deposition parameters necessary for manufacturing low-loss superconducting niobium films.

A superconducting niobium triaxial cavity was investigated to determine its suitability for measuring the residual surface resistance of copper samples that were sputter-coated …


Gamma-Ray Optical Studies Of ⁷³Ge And ⁵⁷Fe, Walter Carlton Mcdermott Iii Apr 1996

Gamma-Ray Optical Studies Of ⁷³Ge And ⁵⁷Fe, Walter Carlton Mcdermott Iii

Physics Theses & Dissertations

The research described herein is among the first attempts to test one of the more popular theories for development of a gamma-ray laser. This work is a "marriage" between the Borrmann effect, which is a consequence of the dynamical theory of x-ray diffraction, and time-filtering which comes from time-domain Mossbauer spectroscopy.

Our experiments involved the search for a nuclear Borrmann effect and the subsequent time-filtering effect using 57Fe and 73Ge. In both cases, no nuclear Borrmann effect was observed; however, the methodology and criteria necessary for such an observation with any isotope were documented. The procedures necessary for …


High Resolution Laser Absorption Spectroscopy Of Ozone Near 1129.4 Cm-1, Lawrence N. Majorana Dec 1980

High Resolution Laser Absorption Spectroscopy Of Ozone Near 1129.4 Cm-1, Lawrence N. Majorana

Physics Theses & Dissertations

A Beer's Law experiment was performed with a tunable laser to determine self broadened line shape parameters of one infrared absorption ozone line in the v1 band for ten pressures from 0.26 to 6.29 Torr at 285K. SO2 line positions were used for wavelength calibration. Line shapes were iteratively fitted to the Voigt function at a Doppler width of 29.54 MHz (HWHM) resulting in values for the integrated line• strength, ( S), of (0.144 +/- 0.007 ) x ·10-20 cm-1/molecule cm-2, line center frequency, (υο) of 1129.426 cm-1 and the Lorentzian contributions to half width, (α …