Open Access. Powered by Scholars. Published by Universities.®

Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

PDF

Electrical and Computer Engineering

Electrical & Computer Engineering Faculty Publications

Electric fields

Publication Year

Articles 1 - 3 of 3

Full-Text Articles in Physics

Long-Range Aceo Phenomena In Microfluidic Channel, Diganta Dutta, Keifer Smith, Xavier Palmer Jan 2023

Long-Range Aceo Phenomena In Microfluidic Channel, Diganta Dutta, Keifer Smith, Xavier Palmer

Electrical & Computer Engineering Faculty Publications

Microfluidic devices are increasingly utilized in numerous industries, including that of medicine, for their abilities to pump and mix fluid at a microscale. Within these devices, microchannels paired with microelectrodes enable the mixing and transportation of ionized fluid. The ionization process charges the microchannel and manipulates the fluid with an electric field. Although complex in operation at the microscale, microchannels within microfluidic devices are easy to produce and economical. This paper uses simulations to convey helpful insights into the analysis of electrokinetic microfluidic device phenomena. The simulations in this paper use the Navier–Stokes and Poisson Nernst–Planck equations solved using COMSOL …


Aluminum Multicharged Ion Generation From Femtosecond Laser Plasma, Md. Haider A. Shaim, Frederick Guy Wilson, Hani E. Elsayed-Ali May 2017

Aluminum Multicharged Ion Generation From Femtosecond Laser Plasma, Md. Haider A. Shaim, Frederick Guy Wilson, Hani E. Elsayed-Ali

Electrical & Computer Engineering Faculty Publications

Aluminum multicharged ion generation from femtosecond laser ablation is studied. A Ti:sapphire laser (wavelength 800 nm, pulse width ∼100 fs, and maximum laser fluence of 7.6 J/cm2) is used. Ion yield and energy distribution of each charge state are measured. A linear relationship between the ion charge state and the equivalent acceleration energy of the individual ion species is observed and is attributed to the presence of an electric field within the plasma-vacuum boundary that accelerates the ions. The ion energy distribution follows a shifted Coulomb-Boltzmann distribution. For Al1+ and Al2+, the ion energy distributions …


Acceleration Element For Femtosecond Electron Pulse Compression, Bao-Liang Qian, Hani E. Elsayed-Ali Jan 2002

Acceleration Element For Femtosecond Electron Pulse Compression, Bao-Liang Qian, Hani E. Elsayed-Ali

Electrical & Computer Engineering Faculty Publications

An acceleration element is proposed for compressing the electron pulse duration in a femtosecond photoelectron gun. The element is a compact metal cavity with curved-shaped walls. An external voltage is applied to the cavity where a special electric field forms in such a way that the slow electrons in the electron pulse front are accelerated more than the fast electrons, and consequently the electron pulse duration will be compressed. The distribution of the electric field inside the acceleration cavity is analyzed for the geometry of the cavity. The electron dynamics in this acceleration cavity is also investigated numerically. Numerical results …