Open Access. Powered by Scholars. Published by Universities.®

Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 8 of 8

Full-Text Articles in Physics

Independent And Simultaneous Control Of Electromagnetic Wave Properties In Self-Collimating Photonic Crystals Using Spatial Variance, Jesus Javier Gutierrez Jan 2020

Independent And Simultaneous Control Of Electromagnetic Wave Properties In Self-Collimating Photonic Crystals Using Spatial Variance, Jesus Javier Gutierrez

Open Access Theses & Dissertations

Photonic crystals are engineered periodic structures that provide great control over electromagnetic waves. One of these mechanisms is self-collimation, in which the electromagnetic wave travels through the photonic crystal along an axis of the lattice without diffracting or spreading. This mechanism of self-collimation is a dispersion phenomenon, which is dependent on the unit cell's physical and geometrical characteristics. An algorithm for generating spatially variant lattices (SVL) was developed that can change geometrical properties in photonic crystals as a function of position, like unit cell orientation, fill fraction, symmetry, and others in a manner that is smooth, continuous, and virtually free …


Label-Free Raman Imaging To Monitor Breast Tumor Signatures, John Ciubuc Jan 2017

Label-Free Raman Imaging To Monitor Breast Tumor Signatures, John Ciubuc

Open Access Theses & Dissertations

Methods built on Raman spectroscopy have shown major potential in describing and discriminating between malignant and benign specimens. Accurate, real-time medical diagnosis benefits in substantial improvements through this vibrational optical method. Not only is acquisition of data possible in milliseconds and analysis in minutes, Raman allows concurrent detection and monitoring of all biological components. Besides validating a significant Raman signature distinction between non-tumorigenic (MCF-10A) and tumorigenic (MCF-7) breast epithelial cells, this study reveals a label-free method to assess overexpression of epidermal growth factor receptors (EGFR) in tumor cells. EGFR overexpression sires Raman features associated with phosphorylated threonine and serine, and …


Bragg Gratings In Polarization Maintaining Optical Fiber As Three Dimensional Strain Sensor, Joel Quintana Jan 2017

Bragg Gratings In Polarization Maintaining Optical Fiber As Three Dimensional Strain Sensor, Joel Quintana

Open Access Theses & Dissertations

Fiber-Bragg Gratings (FBG) for Structural Health Monitoring (SHM) have been studied extensively as they offer electrically passive operation, electromagnetic interference (EMI) immunity, high sensitivity and multiplexing as compared to conventional electric strain sensors. FBG sensors written within polarization maintaining (PM) optical fiber offer ad- ditional dimensions of strain measurement, greatly reducing the number of sensors needed to properly monitor a structure. This reduction however, adds complexity to the dis- crimination of the sensorâ??s optical response to its corresponding applied strains. This Dissertation defines the set of algorithms needed to measure planar strain using PM-FBGs exclusively. It defines the minimum number …


Molecular Dynamics Study On Defect Reduction Strategies Towards The Fabrication Of High Performance Cd1-Xznxte/Cds Solar Cells, Jose Juan Chavez Jan 2015

Molecular Dynamics Study On Defect Reduction Strategies Towards The Fabrication Of High Performance Cd1-Xznxte/Cds Solar Cells, Jose Juan Chavez

Open Access Theses & Dissertations

Cadmium Telluride is a material widely used in terrestrial thin film photovoltaic applications due to its nearly ideal band gap (~1.5 eV) and high absorption coefficient. Due to its low manufacturing cost, this technology has the potential to become a significant energy resource if higher energy conversion efficiencies are achieved. However, the module efficiencies (~14%) are still far from the theoretical maximum (~30%) for this material in a single junction configuration. The reason behind this low performance is attributed to the high number of defects that are present within the device materials. The physics behind the formation mechanisms of these …


Digitally Manufactured Spatially Variant Photonic Crystals, Javier Jair Pazos Jan 2014

Digitally Manufactured Spatially Variant Photonic Crystals, Javier Jair Pazos

Open Access Theses & Dissertations

Metamaterials and photonic crystals are engineered composites that exhibit electromagnetic properties superior to those found in nature. They have been shown to produce novel and useful phenomena that allow extraordinary control over the electromagnetic field. One of these phenomena is self-collimation, an effect observed in photonic crystals in which a beam of light propagates without diffraction and is forced to flow in the direction of the crystal. Self-collimation however, like many of the mechanisms enabled through dispersion engineering, is effective in directions only along the principal axes of the lattice. To this effect, a general purpose synThesis procedure was developed …


Surface Plasmon Polaritons And Waveguide Modes At Structured And Inhomogeneous Surfaces, Javier Polanco Jan 2013

Surface Plasmon Polaritons And Waveguide Modes At Structured And Inhomogeneous Surfaces, Javier Polanco

Open Access Theses & Dissertations

In chapter 1, properties of a p-polarized surface plasmon polariton are studied, propagating circumferentially around a portion of a cylindrical interface between vacuum and a metal, a situation investigated earlier by M. V. Berry (J. Phys. A: Math. Gen. 8, (1975) 1952). When the metal is convex toward the vacuum this mode is radiative and consequently is attenuated as it propagates on the cylindrical surface. An approximate analytic solution of the dispersion relation for this wave is obtained by an approach different from the one used by Berry, and plots of the real and imaginary parts of its wave number …


Structural, Optical And Electrical Properties Of Yttrium-Doped Hafnium Oxide Nanocrystalline Thin Films, Abhilash Kongu Jan 2013

Structural, Optical And Electrical Properties Of Yttrium-Doped Hafnium Oxide Nanocrystalline Thin Films, Abhilash Kongu

Open Access Theses & Dissertations

Hafnium oxide (HfO2) has emerged as the most promising high-k dielectric for Metal-Oxide-Semiconductor (MOS) devices and has been highlighted as the most suitable dielectric materials to replace silicon oxide because of its comprehensive performance. In the present research, yttrium-doped HfO2 (YDH) thin films were fabricated using RF magnetron sputter deposition onto Si (100) and quartz with a variable thickness. Cross-sectional scanning electron microscopy coupled with Filmetrics revealed that film thickness values range from 700 A° to 7500 A°. Electrical properties such as AC Resistivity and current-voltage (I-V) characteristics of YDH films were studied. YDH films that were relatively thin (<1500 A°) crystallized in monoclinic phase while thicker films crystallized in cubic phase. The band gap (Eg) of the films was calculated from the optical measurements. The band gap was found to be ∼5.60 eV for monoclinic while it is ∼6.05 eV for cubic phase of YDH films. Frequency dependence of the electrical resistivity (ρac) and the total conductivity of the films were measured. Resistivity decreased (by three orders of magnitude) with increasing frequency from 100 Hz to 1 MHz, attributed due to the hopping mechanism in YDH films. Whereas, while ρac∼1Ω-m at low frequencies (100 Hz), it decreased to ∼ 104 Ω-cm at higher frequencies (1 MHz). Aluminum (Al) metal electrodes were deposited to fabricate a thin film capacitor with YDH layer as dielectric film thereby employing Al-YDH-Si capacitor structure. The results indicate that the capacitance of the films decrease with increasing film thickness. A detailed analysis of the electrical characteristics of YDH films is presented.


Raman And Infrared Study Of Electrospun Plla/Pcl Nanofiber Blends For Use In Tissue Engineering, Jose Luis Enriquez Carrejo Jan 2012

Raman And Infrared Study Of Electrospun Plla/Pcl Nanofiber Blends For Use In Tissue Engineering, Jose Luis Enriquez Carrejo

Open Access Theses & Dissertations

Recently, the biomedical engineering field has developed at a very fast pace as improved techniques and materials become available to promote its growth. Consequently, the research in polymeric biomaterials has been highly stimulated by this trend. The goal of the current research is to demonstrate the usefulness of the Raman scattering, Raman mapping, and infrared absorption spectroscopies to tissue engineering, by spectroscopically characterizing blends of PLLA and PCL polymers, which were prepared by electrospinning with and without cell addition. The proposed use of these blends is as primary biomaterials in biodegradable scaffolds used in tissue engineering. Both Raman and infrared …