Open Access. Powered by Scholars. Published by Universities.®

Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 11 of 11

Full-Text Articles in Physics

The Missing Link Between Standing-And Traveling-Wave Resonators, Qi Zhong, Haoqi Zhao, Liang Feng, Kurt Busch, Sahin K. Özdemir, Ramy El-Ganainy Aug 2022

The Missing Link Between Standing-And Traveling-Wave Resonators, Qi Zhong, Haoqi Zhao, Liang Feng, Kurt Busch, Sahin K. Özdemir, Ramy El-Ganainy

Michigan Tech Publications

Optical resonators are structures that utilize wave interference and feedback to confine light in all three dimensions. Depending on the feedback mechanism, resonators can support either standing-or traveling-wave modes. Over the years, the distinction between these two different types of modes has become so prevalent that nowadays it is one of the main characteristics for classifying optical resonators. Here, we show that an intermediate link between these two rather different groups exists. In particular, we introduce a new class of photonic resonators that supports a hybrid optical mode, i.e. at one location along the resonator the electromagnetic fields associated with …


Superresolution Enhancement With Active Convolved Illumination, Anindya Ghoshroy Jan 2021

Superresolution Enhancement With Active Convolved Illumination, Anindya Ghoshroy

Dissertations, Master's Theses and Master's Reports

The first two decades of the 21st century witnessed the emergence of “metamaterials”. The prospect of unrestricted control over light-matter interactions was a major contributing factor leading to the realization of new technologies and advancement of existing ones. While the field certainly does not lack innovative applications, widespread commercial deployment may still be several decades away. Fabrication of sophisticated 3d micro and nano structures, specially for telecommunications and optical frequencies will require a significant advancement of current technologies. More importantly, the effects of absorption and scattering losses will require a robust solution since this renders any conceivable application of metamaterials …


Light Field Compression And Manipulation Via Residual Convolutional Neural Network, Eisa Hedayati Jan 2021

Light Field Compression And Manipulation Via Residual Convolutional Neural Network, Eisa Hedayati

Dissertations, Master's Theses and Master's Reports

Light field (LF) imaging has gained significant attention due to its recent success in microscopy, 3-dimensional (3D) displaying and rendering, augmented and virtual reality usage. Postprocessing of LF enables us to extract more information from a scene compared to traditional cameras. However, the use of LF is still a research novelty because of the current limitations in capturing high-resolution LF in all of its four dimensions. While researchers are actively improving methods of capturing high-resolution LF's, using simulation, it is possible to explore a high-quality captured LF's properties. The immediate concerns following the LF capture are its storage and processing …


Generalizable Modeling Of Charge Transport In Single Electron Transistor Devices: Application To Thermal Sensitivity In Semiconducting Island Systems, Paniz Khanmohammadi Hazaveh Jan 2018

Generalizable Modeling Of Charge Transport In Single Electron Transistor Devices: Application To Thermal Sensitivity In Semiconducting Island Systems, Paniz Khanmohammadi Hazaveh

Dissertations, Master's Theses and Master's Reports

Electronic devices, especially MOSFETs, have been dimensionally scaled down to enhance operation of integrated circuits, addressing challenges such as current leakage, fluctuation of intrinsic semiconductor properties, and power dissipation. Reaching dimensions below 20 nm, there are fundamental limitations that are difficult to overcome, driving alternative device paradigms to be sought utilizing the quantum mechanical behavior of electrons. Single electron transistor (SET) devices are examples of a new generation of low-power transistors designed to transport information via single electron tunneling through one or more islands separated by tunnel junctions. Experimentally explored SET devices have shown that there are advantages to using …


Sensing Based On Fano-Type Resonance Response Of All-Dielectric Metamaterials, Elena Semouchkina, Ran Duan, George Semouchkin, Ravindra Pandey Apr 2015

Sensing Based On Fano-Type Resonance Response Of All-Dielectric Metamaterials, Elena Semouchkina, Ran Duan, George Semouchkin, Ravindra Pandey

Michigan Tech Publications

A new sensing approach utilizing Mie resonances in metamaterial arrays composed of dielectric resonators is proposed. These arrays were found to exhibit specific, extremely high-Q factor (up to 15,000) resonances at frequencies corresponding to the lower edge of the array second transmission band. The observed resonances possessed with features typical for Fano resonances (FRs), which were initially revealed in atomic processes and recently detected in macro-structures, where they resulted from interference between local resonances and a continuum of background waves. Our studies demonstrate that frequencies and strength of Fano-type resonances in all-dielectric arrays are defined by interaction between local Mie …


Comparison Of Computer-Based And Optical Face Recognition Paradigms, Abdulaziz A. Alorf Jan 2014

Comparison Of Computer-Based And Optical Face Recognition Paradigms, Abdulaziz A. Alorf

Dissertations, Master's Theses and Master's Reports - Open

The main objectives of this thesis are to validate an improved principal components analysis (IPCA) algorithm on images; designing and simulating a digital model for image compression, face recognition and image detection by using a principal components analysis (PCA) algorithm and the IPCA algorithm; designing and simulating an optical model for face recognition and object detection by using the joint transform correlator (JTC); establishing detection and recognition thresholds for each model; comparing between the performance of the PCA algorithm and the performance of the IPCA algorithm in compression, recognition and, detection; and comparing between the performance of the digital model …


Integration Of Instrumentation And Processing Software Of A Laser Speckle Contrast Imaging System, Jacob James Carrick Jan 2014

Integration Of Instrumentation And Processing Software Of A Laser Speckle Contrast Imaging System, Jacob James Carrick

Dissertations, Master's Theses and Master's Reports - Open

Laser speckle contrast imaging (LSCI) has the potential to be a powerful tool in medicine, but more research in the field is required so it can be used properly. To help in the progression of Michigan Tech's research in the field, a graphical user interface (GUI) was designed in Matlab to control the instrumentation of the experiments as well as process the raw speckle images into contrast images while they are being acquired. The design of the system was successful and is currently being used by Michigan Tech's Biomedical Engineering department. This thesis describes the development of the LSCI GUI …


Characterization Of The Atmospheric Effects On The Transmission Of Thermal Radiation, Mohamed E. Hanafy Jan 2014

Characterization Of The Atmospheric Effects On The Transmission Of Thermal Radiation, Mohamed E. Hanafy

Dissertations, Master's Theses and Master's Reports - Open

Atmospheric scattering plays a crucial rule in degrading the performance of electro optical imaging systems operating in the visible and infra-red spectral bands, and hence limits the quality of the acquired images, either through reduction of contrast or increase of image blur. The exact nature of light scattering by atmospheric media is highly complex and depends on the types, orientations, sizes and distributions of particles constituting these media, as well as wavelengths, polarization states and directions of the propagating radiation. Here we follow the common approach for solving imaging and propagation problems by treating the propagating light through atmospheric media …


Multi-Wavelength Speckle Reduction For Laser Pico-Projectors Using Diffractive Optics, Weston H. Thomas Jan 2014

Multi-Wavelength Speckle Reduction For Laser Pico-Projectors Using Diffractive Optics, Weston H. Thomas

Dissertations, Master's Theses and Master's Reports - Open

Personal electronic devices, such as cell phones and tablets, continue to decrease in size while the number of features and add-ons keep increasing. One particular feature of great interest is an integrated projector system. Laser pico-projectors have been considered, but the technology has not been developed enough to warrant integration. With new advancements in diode technology and MEMS devices, laser-based projection is currently being advanced for pico-projectors. A primary problem encountered when using a pico-projector is coherent interference known as speckle. Laser speckle can lead to eye irritation and headaches after prolonged viewing. Diffractive optical elements known as diffusers have …


Optical Waveguides And Structures For Short Haul Optical Communication Channels Within Printed Circuit Boards, Nicholas J. Riegel Jan 2013

Optical Waveguides And Structures For Short Haul Optical Communication Channels Within Printed Circuit Boards, Nicholas J. Riegel

Dissertations, Master's Theses and Master's Reports - Open

Optical waveguides have shown promising results for use within printed circuit boards. These optical waveguides have higher bandwidth than traditional copper transmission systems and are immune to electromagnetic interference. Design parameters for these optical waveguides are needed to ensure an optimal link budget. Modeling and simulation methods are used to determine the optimal design parameters needed in designing the waveguides. As a result, optical structures necessary for incorporating optical waveguides into printed circuit boards are designed and optimized.

Embedded siloxane polymer waveguides are investigated for their use in optical printed circuit boards. This material was chosen because it has low …


Stochastic Charge Transport In Multi-Island Single-Electron Tunneling Devices, Madhusudan A. Savaikar Jan 2013

Stochastic Charge Transport In Multi-Island Single-Electron Tunneling Devices, Madhusudan A. Savaikar

Dissertations, Master's Theses and Master's Reports - Open

The physics of the operation of singe-electron tunneling devices (SEDs) and singe-electron tunneling transistors (SETs), especially of those with multiple nanometer-sized islands, has remained poorly understood in spite of some intensive experimental and theoretical research. This computational study examines the current-voltage (IV) characteristics of multi-island single-electron devices using a newly developed multi-island transport simulator (MITS) that is based on semi-classical tunneling theory and kinetic Monte Carlo simulation. The dependence of device characteristics on physical device parameters is explored, and the physical mechanisms that lead to the Coulomb blockade (CB) and Coulomb staircase (CS) characteristics are proposed.

Simulations using …