Open Access. Powered by Scholars. Published by Universities.®

Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 24 of 24

Full-Text Articles in Physics

An Inexpensive Maximum Power Point Tracking System For An Insulated Solar Electric Cooker Using An Off-The-Shelf Buck Converter, Andrew A. Perez Sep 2022

An Inexpensive Maximum Power Point Tracking System For An Insulated Solar Electric Cooker Using An Off-The-Shelf Buck Converter, Andrew A. Perez

Physics

A specialized control circuit using an off-the-shelf buck converter is built for an Insulated Solar Electric Cooker (ISEC). Cost and efficient power delivery are the focus. An ISEC is synonymous to a direct load heat resistor, allowing a specific maximum power point tracking (MPPT) algorithm and fewer components. Only a microcontroller, voltage sensor, and digital-to-analog converter are used with the buck converter to maximize the power delivered by a 100W solar panel for the 3.3Ω load.


Developing Positive Thermal Coefficient (Ptc) Heaters For Solar Electric Cooking, Katarina Ivana Brekalo, Andrew Shepherd Sep 2022

Developing Positive Thermal Coefficient (Ptc) Heaters For Solar Electric Cooking, Katarina Ivana Brekalo, Andrew Shepherd

Physics

Positive Thermal Coefficients, PTCs, are materials that abruptly change in resistance in response to changes in temperature. The purpose of this experiment is to explore the viability of using the switching type ceramic PTC thermistor as a replacement for current resistive heaters. These types of PTCs have a nonlinear change in resistance with increases in temperature. This device will be used as a temperature-controlling heating element intended to power an Insulated Solar Electric Cooker (ISEC). The ISEC is designed to cook meals throughout the day for impacted communities as an alternative cooking method that doesn’t require biofuel as an energy …


Developing A Miniature Smart Boat For Marine Research, Michael Isaac Eirinberg Jun 2022

Developing A Miniature Smart Boat For Marine Research, Michael Isaac Eirinberg

Computer Engineering

This project examines the development of a smart boat which could serve as a possible marine research apparatus. The smart boat consists of a miniature vessel containing a low-cost microcontroller to live stream a camera feed, GPS telemetry, and compass data through its own WiFi access point. The smart boat also has the potential for autonomous navigation. My project captivated the interest of several members of California Polytechnic State University, San Luis Obispo’s (Cal Poly SLO) Marine Science Department faculty, who proposed a variety of fascinating and valuable smart boat applications.


Maximum Trapping Focal Length In Photophoretic Trap For 3d Imaging Systems, Jason M. Childers Jun 2022

Maximum Trapping Focal Length In Photophoretic Trap For 3d Imaging Systems, Jason M. Childers

Electrical Engineering

This product is a photophoretic trapping system which allows varying focal lengths to test which focal lengths are possible for trapping toner particles. This system establishes that there exists a maximum trapping distance limitation and is the first time the effect of focal length is studied in a photophoretic trapping system. Increasing photophoretic trapping focal length is necessary for improving this technology as a 3D display. The 3D imaging technology is realized by dragging a microscopic (micrometer-scale) particles with a laser beam to trace an image. This technology can display fully colored and high-resolution 3D images visible from almost any …


Design And Characterization Of Standard Cell Library Using Finfets, Phanindra Datta Sadhu Jun 2021

Design And Characterization Of Standard Cell Library Using Finfets, Phanindra Datta Sadhu

Master's Theses

The processors and digital circuits designed today contain billions of transistors on a small piece of silicon. As devices are becoming smaller, slimmer, faster, and more efficient, the transistors also have to keep up with the demands and needs of the daily user. Unfortunately, the CMOS technology has reached its limit and cannot be used to scale down due to the transistor's breakdown caused by short channel effects. An alternative solution to this is the FinFET transistor technology, where the gate of the transistor is a three dimensional fin that surrounds the transistor and prevents the breakdown caused by scaling …


Direct Drive Solar Panel Control Circuit, Marcorios Bekheit May 2021

Direct Drive Solar Panel Control Circuit, Marcorios Bekheit

Physics

A control circuit is built for insulated solar electric cookers (ISEC). Power delivery and temperature safety are the focus. Using a maximum power point tracking (MPPT) algorithm, Arduino Nano, voltage and current sensors, and a buck converter, the solar panel’s output power was maximized for a direct load heat resistor with 3.5Ω for a range of solar intensities. Using a resistance temperature detector, a temperature sensor is built for safety shutoff.


An Investigation Of Diode Failure, Nicholas James Adams May 2020

An Investigation Of Diode Failure, Nicholas James Adams

Physics

Solar electricity can be used to cheaply cook food and charge electronic devices. We investigate the viability of using diodes as heating elements for insulated solar electric cooking (ISEC). In addition, information on designing and constructing ISEC compatible phone chargers and rechargeable LED lighting systems is included.


Optimizing Llrf Parameters In The Electron-Ion Collider, William M. Bjorndahl Mar 2020

Optimizing Llrf Parameters In The Electron-Ion Collider, William M. Bjorndahl

Physics

To improve particle interaction in the future Electron-Ion Collider (EIC), we investigated different feedback implementations to control the accelerating voltage and examined the power and beam phase for each instance. Using MATLAB, we studied three feedback mechanisms: Direct, One Turn, and Feedforward. Enacting feedforward yielded the best performance. To minimize the klystron power consumption, we analyzed different Low-Level Radio Frequency (LLRF) parameters such as detuning. Combining theory and simulated results, we found the optimal detuning value that minimizes klystron power consumption.


Solar Powered Single-Axis Heliostat Active Solar Tracking Device, Mason Kyle Roberts Sep 2017

Solar Powered Single-Axis Heliostat Active Solar Tracking Device, Mason Kyle Roberts

Physics

As a means of cooking food, the burning of biomass accounts for over 4 million premature deaths in third world countries (“Household Air Pollution and Health”). The focus of this project was to explore an alternative that could utilize focused sunlight to cook food. A solar tracker was designed to be affixed to a parabolic, reflective, tilted single axis heliostat to follow the sun throughout the day and focus the reflected light to the bottom of a cooking surface. This surface became hot enough to for the preparation of food or boiling/sterilization of water.

A goal for each project was …


Multispectral Identification Array, Zachary D. Eagan Jun 2017

Multispectral Identification Array, Zachary D. Eagan

Computer Engineering

The Multispectral Identification Array is a device for taking full image spectroscopy data via the illumination of a subject with sixty-four unique spectra. The array combines images under the illumination spectra to produce an approximate reflectance graph for every pixel in a scene. Acquisition of an entire spectrum allows the array to differentiate objects based on surface material. Spectral graphs produced are highly approximate and should not be used to determine material properties, however the output is sufficiently consistent to allow differentiation and identification of previously sampled subjects. While not sufficiently advanced for use as a replacement to spectroscopy the …


A Prototype Microwave Cavity Control Circuit For Use In Next Generation Free Electron Laser, Josh Thompson, Peter Neal Barrina, Jiayi Jiang, Joe Frisch, Steve Smith, Daniel Van Winkle Aug 2014

A Prototype Microwave Cavity Control Circuit For Use In Next Generation Free Electron Laser, Josh Thompson, Peter Neal Barrina, Jiayi Jiang, Joe Frisch, Steve Smith, Daniel Van Winkle

STAR Program Research Presentations

One of the current programs at SLAC National Accelerator Laboratory is the Linac Coherent Light Source, or LCLS. Using the existing hardware of the last third of their linear accelerator (or “linac”), SLAC has created one of the most energetic X-ray free electron lasers (or “FEL”). Since 2009, LCLS has used this FEL to perform a wide range of experiments across all sciences, most notably ultrafast filming at the molecular scale. As requests for beam-time with this laser increases, SLAC is purposing a linac upgrade to better match this demand. This upgrade, named LCLS-II, will replace existing copper radio frequency …


Rubidium-Based Atomic Clock, Kate Miles Jun 2014

Rubidium-Based Atomic Clock, Kate Miles

Physics

In this paper we will explore the process of building an atomic clock from a function generator, go into an in-depth introductory discussion of the Datum LPRO, and examine how rubidium function generators work.


Feedback Stabilization At Spear3, Daniel Kelley, Jeff Corbett Aug 2013

Feedback Stabilization At Spear3, Daniel Kelley, Jeff Corbett

STAR Program Research Presentations

The SPEAR3 synchrotron lightsource at SLAC relies on a sophisticated radio frequency (RF) timing system to maintain current – electrons – in the storage ring. One problem SPEAR3 operators have dealt with is the thermal expansion of one of the cables supporting this RF timing system. As the cable expands and contracts with the diurnal rise and fall of the sun, the phase of the RF in the cable shifts. This shifting phase affects the timing accuracy of electron injections into the storage ring.

A common feedback control algorithm PID (Proportional Integral Derivative) has countless applications in engineering. PID feedback …


A Tunable Electromagnetic Band-Gap Microstrip Filter, Greg A. Lancaster Jan 2013

A Tunable Electromagnetic Band-Gap Microstrip Filter, Greg A. Lancaster

Master's Theses

In high frequency design, harmonic suppression is a persistent struggle. Non-linear devices such as switches and amplifiers produce unwanted harmonics which may interfere with other frequency bands. Filtering is a widely accepted solution, however there are various shortcomings involved. Suppressing multiple harmonics, if desired, with traditional lumped element and distributed component band-stop filters requires using multiple filters. These topologies are not easily made tunable either. A new filter topology is investigated called Electromagnetic Band-Gap (EBG) structures.

EBG structures have recently gained the interest of microwave designers due to their periodic nature which prohibits the propagation of certain frequency bands. EBG …


Commissioning Of The Asta Laser Lab With Uv Pulse Length Characterization, Daniel Kelley, Jeff Corbett Aug 2012

Commissioning Of The Asta Laser Lab With Uv Pulse Length Characterization, Daniel Kelley, Jeff Corbett

STAR Program Research Presentations

The Linac Coherent Light Source (LCLS) at SLAC depends on a photocathode electron gun to provide the linear accelerator with the raw material – electrons – used for making X-ray laser pulses. The photocathode used in the LCLS Injector is a clean copper plate in high vacuum. When the cathode is struck with high energy UV light, electrons are liberated from its surface and then accelerated down the linac with radio-frequency electric fields. These fast-moving bunches of electrons are directed through an undulator magnet to radiate X-ray light.

Although scientists have been using photocathode techniques at SLAC for 25 years, …


The Double Pendulum: Construction And Exploration, Benjamin J. Knudson Jul 2012

The Double Pendulum: Construction And Exploration, Benjamin J. Knudson

Physics

The exploration of a nonlinear mechanical system, the Double Pendulum, a physical pendulum on the end of a physical pendulum, using analytic and experimental approaches. Also included discussion of the design and construction of the Double Pendulum apparatus to work with Vernier LabPro and LoggerPro. The apparatus outputs live data of the angles to a LoggerPro which collects and produces time evolution graphs as well as a corresponding animation lending itself to comparison with theoretical models. Normal mode frequencies are found both analytically and experimentally for the the general (real) double pendulum. Examples of both simple (periodic) and complex (chaotic) …


The Effect Of Polarization And Ingan Quantum Well Shape In Multiple Quantum Well Light Emitting Diode Heterostructures, Patrick M. Mcbride Jun 2012

The Effect Of Polarization And Ingan Quantum Well Shape In Multiple Quantum Well Light Emitting Diode Heterostructures, Patrick M. Mcbride

Master's Theses

Previous research in InGaN/GaN light emitting diodes (LEDs) employing semi-classical drift-diffusion models has used reduced polarization constants without much physical explanantion. This paper investigates possible physical explanations for this effective polarization reduction in InGaN LEDs through the use of the simulation software SiLENSe. One major problem of current LED simulations is the assumption of perfectly discrete transitions between the quantum well (QW) and blocking layers when experiments have shown this to not be the case. The In concentration profile within InGaN multiple quantum well (MQW) devices shows much smoother and delayed transitions indicative of indium diffusion and drift during …


Multipolymer Interactions In Bulk Heterojunction Photovoltaic Devices, Grant Olson Jun 2012

Multipolymer Interactions In Bulk Heterojunction Photovoltaic Devices, Grant Olson

Physics

Multipolymer photovoltaics, single layer devices made up of multiple photoactive polymers, can create organic photovoltaics (OPVs) with a wider spectral response than single polymer systems without the difficult fabrication of a tandem. Our group has successfully created multipolymer solar devices with 2% power conversion efficiency. We have analyzed the optical and electrical properties of these devices, and found that it may be possible for polymers to assist each other with charge extraction, though combining polymers disrupts single polymer crystallinity.


Inductive Metal Identification, Paul Maggi Jun 2012

Inductive Metal Identification, Paul Maggi

Electrical Engineering

This project focuses on creating a device to differentiate between various types of metals via magnetic induction. Magnetic induction is used because it is both non-optical and non-contact. It achieves this by generating a varying magnetic field, which induces eddy currents in the metal. These eddy currents produce small disturbances in the surrounding magnetic field, which can be sensed with Hall Effect Sensors (HES). The primary challenge in this project was generating a sufficiently strong magnetic field to detectable disturbances. In order to achieve better results, a stronger magnetic field must be used as well as more sensitive Hall Effect …


Day/Night Band Imager For A Cubesat, Eric Stanton Jun 2012

Day/Night Band Imager For A Cubesat, Eric Stanton

Electrical Engineering

Day/Night Band (DNB) earth sensing and meteorological systems like the Defense Meteorological Satellite Program (DMSP) Operational Linescan System (OLS) provide visible wavelength imagery 24 hours a day that is used primarily for cloud imaging in support of weather forecasting. This paper describes a compact push-broom imager that meets low light imaging requirements for DMSP OLS and the NOAA/NASA Joint Polar Satellite System (JPSS) as documented in the Integrated Operational Requirements Document [1] (IORD) including the imager design, system level concepts of operation for data collection, radiometric and spatial calibration, and data transmission to Earth. This small, lightweight imager complies with …


Optical Mode Pattern Study Of Gan Based Leds With And Without Nanoscale Top Grating, Gregory Chavoor Jan 2012

Optical Mode Pattern Study Of Gan Based Leds With And Without Nanoscale Top Grating, Gregory Chavoor

Electrical Engineering

This study analyzes optical confinement factor and light emitting mode order for three different GaN LEDs: a conventional LED, thin Film LED, and thin Film LED with a photonic crystal (PhC) grating. For the first structure, we increase the thickness of AlxGa1-xN from 0 to 600nm, alter the x composition in AlxGa1-xN from 0.05 to 0.2 in steps of 0.05, and adjust the p-GaN and n-GaN thicknesses each from 0 to 200nm. For the second structure, we alter the n-GaN substrate thickness from 300-1000nm in steps of 100nm and 1000-4000nm in steps …


Wavelength Dependence Of Transverse Mode Coupling With/Without E-Block Of Gan Laser Cavity, Krishneel Lal Nov 2011

Wavelength Dependence Of Transverse Mode Coupling With/Without E-Block Of Gan Laser Cavity, Krishneel Lal

Electrical Engineering

No abstract provided.


Comparison Of A High Purity Germanium Gamma Ray Spectrometer And A Multidimensional Nai(T1) Scintillation Gamma Ray Spectrometer, Greg Stratton Jul 2011

Comparison Of A High Purity Germanium Gamma Ray Spectrometer And A Multidimensional Nai(T1) Scintillation Gamma Ray Spectrometer, Greg Stratton

Aerospace Engineering

This report compares two different gamma ray spectrometers in terms of performance, operation, and apparatus and also investigates the design and integration challenges of using gamma ray spectrometers in space. The first spectrometer is a one-dimensional high purity germanium (HPGe) spectrometer and the second is a multidimensional NaI(Tl) scintillation spectrometer (MGRS). The key results show that the HPGe exhibits 15 to 27 times better energy resolution than the MGRS, but the MGRS is 52 times more sensitive and removes 177 % more of the background radiation.


Development Of A Cubesat Instrument For Microgravity Particle Damper Performance Analysis, John Trevor Abel Jun 2011

Development Of A Cubesat Instrument For Microgravity Particle Damper Performance Analysis, John Trevor Abel

Master's Theses

Spacecraft pointing accuracy and structural longevity requirements often necessitate auxiliary vibration dissipation mechanisms. However, temperature sensitivity and material degradation limit the effectiveness of traditional damping techniques in space. Robust particle damping technology offers a potential solution, driving the need for microgravity characterization. A 1U cubesat satellite presents a low cost, low risk platform for the acquisition of data needed for this evaluation, but severely restricts available mass, volume, power and bandwidth resources. This paper details the development of an instrument subject to these constraints that is capable of capturing high resolution frequency response measurements of highly nonlinear particle damper dynamics.