Open Access. Powered by Scholars. Published by Universities.®

Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 10 of 10

Full-Text Articles in Physics

Positron Emission Tomography In Oncology And Environmental Science, Samantha Delaney Jun 2024

Positron Emission Tomography In Oncology And Environmental Science, Samantha Delaney

Dissertations, Theses, and Capstone Projects

The last half century has played witness to the onset of molecular imaging for the clinical assessment of physiological targets. While several medical imaging modalities allow for the visualization of the functional and anatomical properties of humans and living systems, few offer accurate quantitation and the ability to detect biochemical processes with low-administered drug mass doses. This limits how physicians and scientists may diagnose and treat medical issues, such as cancer, disease, and foreign agents.

A promising alternative to extant invasive procedures and suboptimal imaging modalities to assess the nature of a biological environment is the use of positron emission …


A Vibrational Spectroscopic Based Approach For Diagnosing Babesia Bovis Infection, Anja Ruther, David Perezguaita, William Poole, Brian Cooke, Carlos Suarez, Philip Heraud, Bayden Wood Jan 2020

A Vibrational Spectroscopic Based Approach For Diagnosing Babesia Bovis Infection, Anja Ruther, David Perezguaita, William Poole, Brian Cooke, Carlos Suarez, Philip Heraud, Bayden Wood

Articles

Babesia bovis parasites present a serious and significant health concern for the beef and dairy industries in many parts of the world. Difficulties associated with the current diagnostic techniques include they are prone to human error (microscopy) or expensive and time consuming (Polymerase Chain Reaction) to perform. Little is known about the biochemical changes in blood that are associated with Babesia infections. The discovery of new biomarkers will lead to improved diagnostic outcomes for the cattle industry. Vibrational spectroscopic technologies can record a chemical snapshot of the entire organism and the surrounding cell thereby providing a phenotype of the organism …


Estimating And Correcting Interference Fringes In Infrared Spectra In Infrared Hyperspectral Imaging, Ghazal Azarfar, Ebrahim Aboualizadeh, Nicholas Walter,, Simona Ratti, Camilla Olivieri, Alessandra Alessandra, Michael Nasse, Achim Kohler, Mario Giordano, Carol Hirschmugl Sep 2018

Estimating And Correcting Interference Fringes In Infrared Spectra In Infrared Hyperspectral Imaging, Ghazal Azarfar, Ebrahim Aboualizadeh, Nicholas Walter,, Simona Ratti, Camilla Olivieri, Alessandra Alessandra, Michael Nasse, Achim Kohler, Mario Giordano, Carol Hirschmugl

Physics Faculty Articles

Short-term acclimation response of individual cells of Thalassiosira weissflogii was monitored by Synchrotron FTIR imaging over the span of 75 minutes. The cells, collected from batch cultures, were maintained in a constant flow of medium, at an irradiance of 120 μmol m−2 s−1 and at 20 °C. Multiple internal reflections due to the micro fluidic channel were modeled, and showed that fringes are additive sinusoids to the pure absorption of the other components of the system. Preprocessing of the hyperspectral cube (x, y, Abs(λ)) included removing spectral fringe using an EMSC approach. Principal component analysis of the time series of …


Investigation Of Iron Oxide Nanocolloidal Suspension Diffusion Using A Direct Imaging Method, Ashley E. Rice, Ana Oprisan Nov 2017

Investigation Of Iron Oxide Nanocolloidal Suspension Diffusion Using A Direct Imaging Method, Ashley E. Rice, Ana Oprisan

Journal of the South Carolina Academy of Science

We performed a set of experiments using a direct imaging method to investigate the diffusion process of iron oxide, Fe2O3, nanoparticles. We studied concentration fluctuations that move against the concentration gradient and induce disturbances in the interface between the iron oxide suspension and water in the sample cell. Using this imaging method in combination with the differential dynamic algorithm for image processing, we are able to extract information about the power, size, and lifetime of the fluctuations. We performed this experiment both in the presence and in the absence of a 4.2 mT magnetic field. We …


Characterization Of Low Density Intracranial Lesions Using Dual-Energy Computed Tomography, Jessica L. Nute May 2015

Characterization Of Low Density Intracranial Lesions Using Dual-Energy Computed Tomography, Jessica L. Nute

Dissertations & Theses (Open Access)

Calcific and hemorrhagic foci of susceptibility are frequently encountered on routine brain MR studies. Both etiologies cause variations in local magnetic field strength, leading to dark regions on the MR images that cannot be classified. Single-energy CT (SECT) can be used to identify lesions with attenuation over 100 HU as calcific, however lesions with lower attenuation cannot be reliably identified. While calcific lesions are unlikely to cause harm, hemorrhagic lesions carry a risk of subsequent intracranial bleeding; as such, identification of hemorrhage is vital in preventing the inappropriate use of anticoagulant medications in patients with hemorrhagic lesions.

Given there currently …


Correct Spectral Conversion Between Surface‐Enhanced Raman And Plasmon Resonance Scattering From Nanoparticle Dimers For Single‐Molecule Detection, Kyuwan Lee Dec 2012

Correct Spectral Conversion Between Surface‐Enhanced Raman And Plasmon Resonance Scattering From Nanoparticle Dimers For Single‐Molecule Detection, Kyuwan Lee

Kyuwan Lee

Simultaneous measurement of surface-enhanced Raman scattering (SERS) and localized surface plasmon resonance (LSPR) in nanoparticle dimers presents outstanding opportunities in molecular identification and in the elucidation of physical properties, such as the size, distance, and deformation of target species. SERS–LSPR instrumentation exists and has been used under limited conditions, but the extraction of SERS and LSPR readouts from a single measurement is still a challenge. Herein, the extraction of LSPR spectra from SERS signals is reported and a tool for measuring the interparticle distance from Raman enhancement data by the standardization of the SERS signal is proposed. The SERS nanoruler …


Use Of Second Harmonic Generation (Shg) Imaging For 3-Dimensional Ultrastructural Visualization Of Muscle Repair Mechanisms, Matthew Dufner May 2012

Use Of Second Harmonic Generation (Shg) Imaging For 3-Dimensional Ultrastructural Visualization Of Muscle Repair Mechanisms, Matthew Dufner

Honors Scholar Theses

In this study, we have combined SHG imaging with various fluorescent dyes which are designed to stain nuclei and used a skeletal muscle injury and regeneration model to establish the ability of this approach to reliably and reproducibly evaluate the above nuclear parameters. By using the cobra cardiotoxin (CTX-1), which creates acute well defined injuries within the muscle, on the tibialis anterior (TA) and gastrocnemius hind limb muscles of mice, predictable and reproducible regenerative patterns (in response to acute injury) can be observed by harvesting muscle samples at specific time points during recovery. Through SHG imaging, we endeavor to document …


Dna− Gold Nanoparticle Reversible Networks Grown On Cell Surface Marker Sites: Application In Diagnostics, Kyuwan Lee Feb 2011

Dna− Gold Nanoparticle Reversible Networks Grown On Cell Surface Marker Sites: Application In Diagnostics, Kyuwan Lee

Kyuwan Lee

Effective identification of breast cancer stem cells (CSC) benefits from a multiplexed approach to detect cell surface markers that can distinguish this subpopulation, which can invade and proliferate at sites of metastasis. We present a new approach for dual-mode sensing based on targeting using pointer and signal enhancement using enhancer particle networks for detection by surface plasmon resonance (SPR) and surface-enhanced Raman scattering (SERS). We demonstrate our concept to detect cell surface markers, CD44 and CD24, in three breast cancer cell lines to identify a CD44+/CD24− subpopulation of CSCs. The designed network structure can be well-controlled and has improved sensitivity …


Silver Nanosphere Sers Probes For Sensitive Identification Of Pathogens, Kyuwan Lee Sep 2010

Silver Nanosphere Sers Probes For Sensitive Identification Of Pathogens, Kyuwan Lee

Kyuwan Lee

The identification and timely detection of pathogenic bacteria is critical to ensuring safe food, health, and water. Although surface enhanced Raman scattering (SERS) methods have been used for pathogen characterization and single molecule sensing, the challenge of detecting pathogens in very low numbers using an optimal substrate that is sensitive and reproducible is still a challenge. In this report, we have developed and explored a novel SERS active substrate of 60−80 nm diameter through the assembly of Ag nanocrystals (AgNCs) into Ag nanospheres (AgNSs). A finite difference time domain (FDTD) analysis of the electromagnetic field produced by these structures and …


Periodic And Dynamic 3-D Gold Nanoparticle− Dna Network Structures For Surface-Enhanced Raman Spectroscopy-Based Quantification, Kyuwan Lee Mar 2009

Periodic And Dynamic 3-D Gold Nanoparticle− Dna Network Structures For Surface-Enhanced Raman Spectroscopy-Based Quantification, Kyuwan Lee

Kyuwan Lee

The enhancement factor of gold nanoparticles linked by DNA in a three-dimensional (3-D) network structure was evaluated as 1.12 × 107 and shown to be greater than a two-dimensional (2-D) array by a factor of 10, possibly due to the dimensional expansion of resonance and periodicity of the so formed structures. Uniform and higher level of enhancement was possible from these DNA linked gold nanoparticle networks because of the matching of the resonant condition and the excitation wavelength (785 nm) to enable dynamic quantification of analytes by surface-enhanced Raman spectroscopy (SERS). The structure was first validated by obtaining a SERS …